Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ecol Evol ; 14(7): e70067, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39076614

RESUMO

As human activities continue to expand, wildlife persistence faces escalating threats from roads. In Wolong area of Giant Panda National Park, the local giant pandas (Ailuropoda melanoleuca) are divided into two population groups along the National Highway G350 (NHG). Therefore, selecting suitable areas to help those giant pandas communicate across the NHG is necessary. In this research, we evaluated the presence of human activities and simulated their absence to analyze how they affect the giant panda's habitat in Wolong. Subsequently, based on the kernel density estimation (KDE) for giant pandas and the main human distribution locations, we selected suitable areas for the population link between the two road sections on the NHG. We simulated the absence of human activities on the two road sections to compare changes in the habitat suitability index (HSI) and connectivity value (CV) relative to their presence. We aimed to carefully select the area for future giant panda corridor plans and simulate whether eliminating human activities will significantly improve the HSI and CV of the area. Our results show that: (1) Human activities presence has led to subtle changes in the landscape pattern of suitable habitats and a decrease in Wolong by 78.76 km2 compared to their absence. (2) Human activities presence significantly reduced HSI and CV in the 1000 m buffer along the NHG compared to their absence. (3) The HSI and CV of the 1000 m buffer in the simulated absence of human activities for the two road sections were significantly higher than their presence. This research identified the optimal road section for crossing the NHG to link giant panda population groups and habitats in Wolong. These insights are significant for formulating conservation decisions and corridor plans and for promoting wildlife conservation in reserves amid high levels of human activity.

2.
Mol Biol Evol ; 36(7): 1430-1441, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30912799

RESUMO

In the absence of both positive and negative selections, coding sequences evolve at a neutral rate (R = 1). Such a high genomic rate is generally not achievable due to the prevalence of negative selection against codon substitutions. Remarkably, somatic evolution exhibits the seemingly neutral rate R ∼ 1 across normal and cancerous tissues. Nevertheless, R ∼ 1 may also mean that positive and negative selections are both strong, but equal in intensity. We refer to this regime as quasi-neutral. Indeed, individual genes in cancer cells often evolve at a much higher, or lower, rate than R ∼ 1. Here, we show that 1) quasi-neutrality is much more likely when populations are small (N < 50); 2) stem-cell populations in single normal tissue niches, from which tumors likely emerge, have a small N (usually <50) but selection at this stage is measurable and strong; 3) when N dips below 50, selection efficacy decreases precipitously; and 4) notably, N is smaller in the stem-cell niche of the small intestine than in the colon. Hence, the ∼70-fold higher rate of phenotypic evolution (observed as cancer risk) in the latter can be explained by the greater efficacy of selection, which then leads to the fixation of more advantageous and fewer deleterious mutations in colon cancers. In conclusion, quasi-neutral evolution sheds a new light on a general evolutionary principle that helps to explain aspects of cancer evolution.


Assuntos
Carcinogênese , Evolução Molecular , Deriva Genética , Humanos , Mutação , Neoplasias/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...