Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(20): 22730-22740, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32357293

RESUMO

Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) has been used for gaining insights into perovskite solar cells (PSCs). However, the importance of selecting ion beam parameters to eliminate artifacts in the resulting depth profile is often overlooked. In this work, significant artifacts were identified with commonly applied sputter sources, i.e., an O2+ beam and an Ar-gas cluster ion beam (Ar-GCIB), which could lead to misinterpretation of the PSC structure. On the other hand, polyatomic C60+ and Ar+ ion beams were found to be able to produce depth profiles that properly reflect the distribution of the components. On the basis of this validated method, differences in component distribution, depending on the fabrication processes, were identified and discussed. The solvent-engineering process yielded a homogeneous film with higher device performance, but sequential deposition led to a perovskite layer sandwiched by methylammonium-deficient layers that impeded the performance. For device degradation, it was found that most components remained intact at their original position except for iodide. This result unambiguously indicated that iodide diffusion was one of the key factors governing the device lifetime. With the validated parameters provided, ToF-SIMS was demonstrated as a powerful tool to unveil the structure variation amid device performance and during degradation, which are crucial for the future development of PSCs.

2.
Ultrasonics ; 83: 157-163, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28408049

RESUMO

Episodic release of bioactive compounds plays an important role in biological systems. "On-demand" release systems which based on polymeric materials and activated by external stimuli may provide the necessary functionality. Here we describe an ultrasound-responsive hydrogel based on N-isopropylacrylamide (NIPAM) and N,N'-methylenebisacrylamide (MBAm), which is suitable for triggered release of two large molecules: bovine serum albumin (BSA, 66kDa) and dextran (3-5kDa). It is shown that the release amount of these two large molecules increased with increasing hydrogel temperature, and the application of ultrasound further increased the release. By simply adjusting the contents of NIPAM and MBAm, the difference of BSA release between the presence and absence of ultrasound could be adjusted from 2.7 to 84 folds. There was also a positive correlation between the ultrasound intensity and release amount. These properties made the NIPAM-based hydrogel a tunable platform for focal drug delivery.

3.
Ultrason Sonochem ; 32: 44-53, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27150744

RESUMO

The effects of an implant on temperature distribution in a tissue-mimicking hydrogel phantom during the application of therapeutic ultrasound were investigated. In vitro experiments were conducted to compare the influences of plastic and metal implants on ultrasound diathermy and to calibrate parameters in finite element simulation models. The temperature histories and characteristics of the opaque (denatured) areas in the hydrogel phantoms predicted by the numerical simulations show good correlation with those observed in the in vitro experiments. This study provides an insight into the temperature profile in the vicinity of an implant by therapeutic ultrasound heating typically used for physiotherapy. A parametric study was conducted through numerical simulations to investigate the effects of several factors, such as implant material type, ultrasound operation frequency, implant thickness and tissue thickness on the temperature distribution in the hydrogel phantom. The results indicate that the implant material type and implant thickness are the main parameters influencing the temperature distribution. In addition, once the implant material and ultrasound operation frequency are chosen, an optimal implant thickness can be obtained so as to avoid overheating injuries in tissue.


Assuntos
Temperatura , Terapia por Ultrassom , Simulação por Computador , Modelos Biológicos , Imagens de Fantasmas
4.
Nanotechnology ; 26(26): 265702, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26057412

RESUMO

Plasmonic silver nanostructures and a precise ZnO cover layer prepared by capacitively coupled plasma atomic layer deposition (ALD) were exploited to enhance the Raman scattering from nanoscale ultrathin films on a Si substrate. The plasmonic activity was supported by a nanostructured Ag (nano-Ag) layer, and a ZnO cover layer was introduced upon the nano-Ag layer to spectrally tailor the localized surface plasmon resonance to coincide with the laser excitation wavelength. Because of the optimized dielectric environment provided by the precise growth of ZnO cover layer using ALD, the intensity of Raman scattering from nanoscale ultrathin films was significantly enhanced by an additional order of magnitude, leading to the observation of the monoclinic and tetragonal phases in the nanoscale ZrO2 high-K gate dielectric as thin as ∼6 nm on Si substrate. The excellent agreement between the finite-difference time-domain simulation and experimental measurement further confirms the so-called [absolute value]E(->)[absolute value](4) dependence of the surface-enhanced Raman scattering. This technique of plasmonic enhancement of Raman spectroscopy, assisted by the nano-Ag layer and optimized dielectric environment prepared by ALD, can be applied to characterize the structures of ultrathin films in a variety of nanoscale materials and devices, even on a Si substrate with overwhelming Raman background.

5.
Ultrason Sonochem ; 23: 399-405, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25453217

RESUMO

The ability of N-isopropylacrylamide (NIPAM)-based hydrogel phantoms to mimic tissues with different acoustic and thermal properties under high-intensity focused ultrasound (HIFU) ablation was investigated. These phantoms were designed to model the formation of thermal lesions in tissues above the threshold temperature of protein denaturation. By adjusting the concentration of acrylic acid (AAc) in the NIPAM-based hydrogel phantoms, the cloud point (i.e., lower critical solution temperature) of the phantoms could be tailored to produce HIFU thermal lesions similar to those formed in different swine tissues in terms of size and shape. Additionally, energy thresholds for inducing transient or permanent bubbles in the phantoms during HIFU ablation were also identified to shed light on the onset of cavitation or material damage. The NIPAM-based hydrogel phantoms developed in this study possess major advantages such as transparent, reusable and tailorable properties, and are practical tools for characterizing an ablative device (or treatment) to determine its efficacy and safety.

6.
ACS Appl Mater Interfaces ; 6(6): 4179-85, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24564803

RESUMO

Plasmonic enhancement of photoluminescence from bulk silicon was achieved by spectrally tailoring coupled localized surface plasmon resonance (LSPR) in the Al2O3 cover/nanostructured platinum (nano-Pt)/Al2O3 spacer/silicon multilayer structures prepared by atomic layer deposition (ALD). Agreement between the simulation and experimental data indicates that the plasmonic activity originates from absorption enhancement due to coupled LSPR. Because of the optimized dielectric environment deposited by ALD around the nano-Pt layer, absorption of the multilayer structure was enhanced by the precise tuning of coupled LSPR to coincide with the excitation wavelength. This accurate plasmonic multilayer structure grown by ALD with high precision, tunability, uniformity, and reproducibility can be further applied in efficient light-emitting devices.

7.
Ultrasound Med Biol ; 40(1): 115-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24210856

RESUMO

Non-invasive temperature measurement of tissues deep inside the body has great potential for clinical applications, such as temperature monitoring during thermal therapy and early diagnosis of diseases. We developed a novel method for both temperature estimation and thermal mapping that uses ultrasound B-mode radiofrequency data. The proposed method is a hybrid that combines elements of physical and statistical models to achieve higher precision and resolution of temperature variations and distribution. We propose a dimensionless combined index (CI) that combines the echo shift differential and signal intensity difference with a weighting factor relative to the distance from the heat source. In vitro experiments verified that the combined index has a strong linear relationship with temperature variation and can be used to effectively estimate temperature with an average relative error <5%. This algorithm provides an alternative for imaging guidance-based techniques during thermal therapy and could easily be integrated into existing ultrasound systems.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Modelos Estatísticos , Termografia/métodos , Ultrassonografia/métodos , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia/instrumentação
8.
J Acoust Soc Am ; 134(2): 1530-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23927193

RESUMO

A hybrid method for estimating temperature with spatial mapping using diagnostic ultrasound, based on detection of echo shifts from tissue undergoing thermal treatment, is proposed. Cross-correlation and zero-crossing tracking are two conventional algorithms used for detecting echo shifts, but their practical applications are limited. The proposed hybrid method combines the advantages of both algorithms with improved accuracy in temperature estimation. In vitro experiments were performed on porcine muscle for preliminary validation and temperature calibration. In addition, thermal mapping of rabbit thigh muscle in vivo during high-intensity focused ultrasound heating was conducted. Results from the in vitro experiments indicated that the difference between the estimated temperature change by the proposed hybrid method and the actual temperature change measured by the thermocouple was generally less than 1 °C when the increase in temperature due to heating was less than 10 °C. For the in vivo study, the area predicted to experience the highest temperature coincided well with the focal point of the high-intensity focused ultrasound transducer. The computational efficiency of the hybrid algorithm was similar to that of the fast cross-correlation algorithm, but with an improved accuracy. The proposed hybrid method could provide an alternative means for non-invasive monitoring of limited temperature changes during hyperthermia therapy.


Assuntos
Temperatura Corporal , Músculo Esquelético/diagnóstico por imagem , Termografia/métodos , Ultrassonografia/métodos , Algoritmos , Animais , Calibragem , Ablação por Ultrassom Focalizado de Alta Intensidade , Temperatura Alta , Modelos Animais , Músculo Esquelético/cirurgia , Valor Preditivo dos Testes , Coelhos , Padrões de Referência , Reprodutibilidade dos Testes , Suínos , Termografia/normas , Fatores de Tempo , Ultrassonografia/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...