RESUMO
BACKGROUND: Currently, clinical indicators for evaluating endothelial permeability in sepsis are unavailable. Endothelium-derived extracellular vesicles (EDEVs) are emerging as biomarkers of endothelial injury. Platelet endothelial cell adhesion molecule (PECAM) and vascular endothelial (VE)-cadherin are constitutively expressed endothelial intercellular adhesion molecules that regulate intercellular adhesion and permeability. Herein, we investigated the possible association between EDEVs expressing intercellular adhesion molecules (PECAM+ or VE-cadherin+ EDEVs) and endothelial permeability and sepsis severity. METHODS: Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor alpha (TNF-α) directly or after pretreatment with permeability-modifying reagents such as angiopoietin-1, prostacyclin, or vascular endothelial growth factor (VEGF) to alter TNF-α-induced endothelial hyperpermeability. Endothelial permeability was measured using the dextran assay or transendothelial electrical resistance. Additionally, a prospective cross-sectional observational study was conducted to analyze circulating EDEV levels in patients with sepsis. EDEVs were examined in HUVEC culture supernatants or patient plasma (nonsepsis, n = 30; sepsis, n = 30; septic shock, n = 42) using flow cytometry. The Wilcoxon rank-sum test was used for comparisons between 2 groups. Comparisons among 3 or more groups were performed using the Steel-Dwass test. Spearman's test was used for correlation analysis. Statistical significance was set at P < .05. RESULTS: TNF-α stimulation of HUVECs significantly increased EDEV release and endothelial permeability. Pretreatment with angiopoietin-1 or prostacyclin suppressed the TNF-α-induced increase in endothelial permeability and inhibited the release of PECAM+ and VE-cadherin+ EDEVs. In contrast, pretreatment with VEGF increased TNF-α-induced endothelial permeability and the release of PECAM+ and VE-cadherin+ EDEVs. However, pretreatment with permeability-modifying reagents did not affect the release of EDEVs expressing inflammatory stimulus-inducible endothelial adhesion molecules such as E-selectin, intracellular adhesion molecule-1, or vascular cell adhesion molecule-1. The number of PECAM+ EDEVs on admission in the septic-shock group (232 [124, 590]/µL) was significantly higher (P = .043) than that in the sepsis group (138 [77,267]/µL), with an average treatment effect of 98/µL (95% confidence interval [CI], 2-270/µL), and the number of VE-cadherin+ EDEVs in the septic-shock group (173 [76,339]/µL) was also significantly higher (P = .004) than that in the sepsis group (81 [42,159]/µL), with an average treatment effect (ATE) of 79/µL (95% CI, 19-171/µL); these EDEV levels remained elevated until day 5. CONCLUSIONS: EDEVs expressing intercellular adhesion molecules (PECAM+ or VE-cadherin+ EDEVs) may reflect increased endothelial permeability and could be valuable diagnostic and prognostic markers for sepsis.
Assuntos
Antígenos CD , Caderinas , Permeabilidade Capilar , Vesículas Extracelulares , Células Endoteliais da Veia Umbilical Humana , Sepse , Índice de Gravidade de Doença , Humanos , Vesículas Extracelulares/metabolismo , Sepse/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino , Estudos Prospectivos , Antígenos CD/metabolismo , Feminino , Pessoa de Meia-Idade , Caderinas/metabolismo , Idoso , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Estudos Transversais , Células Cultivadas , Angiopoietina-1/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Endotélio Vascular/metabolismo , Epoprostenol/metabolismoRESUMO
The combination of amphiphilic ions and metal complexes may enable the construction of assemblies in which the assembly structure and electronic state of the metal complexes change concertedly. In this work, an alternating layered structure of [Co2Fe2] complexes and amphiphilic anions was constructed. In the crystal structure, [Co2Fe2] complexes and water molecules formed a hydrogen-bonded supramolecular one-dimensional (1D) chain in the hydrophilic layer. A reversible structural change between the 1D chain and discrete [Co2Fe2] complexes was found to occur concertedly with an electron transfer-coupled spin transition (ETCST) of the [Co2Fe2] complex and desorption/adsorption of water molecules.
RESUMO
A pair of novel chiral Zn(II) complexes coordinated by Schiff-base type ligands derived from BINOL (1,1'-bi-2-naphthol), R-/S-Zn, were synthesized. X-ray crystallography revealed the presence of two crystallographically independent complexes; one has a distorted trigonal-bipyramidal structure coordinated by two binaphthyl ligands and one disordered methanol molecule (molecule A), while the other has a distorted tetrahedral structure coordinated by two binaphthyl ligands (molecule B). Numerous CHâ¯π and CHâ¯O interactions were identified, contributing to the formation of a 3-dimensional rigid network structure. Both R-/S-Zn exhibited fluorescence in both CH2Cl2 solutions and powder samples, with the photoluminescence quantum yields (PLQYs) of powder samples being twice as large as those in solutions, indicating aggregation-induced enhanced emission (AIEE). The AIEE properties were attributed to the restraint of the molecular motion arising from the 3-dimensional intermolecular interactions. CD and CPL spectra were observed for R-/S-Zn in both solutions and powders. The dissymmetry factors, gabs and gCPL values, were within the order of 10-3 to 10-4 magnitudes, comparable to those reported for chiral Zn(II) complexes in previous studies.
RESUMO
Industry-academia Collaboration is an academic activity within academia(educational institutions such as universities, research institutes, etc.)formed to research and develop new technologies, create new businesses and knowledge, and recruit outsourcing human resources. There is a collaboration between an industry(a private company, a group that engages in broad commercial activities and links research and development directly to economic activity)and academia. Amidst the dramatic changes in the environment surrounding the goals of research and development of new technologies and the creation of new businesses, there are changes in what academia can do complementarily. We will outline the changes and current situation, including the efforts of the Tohoku University Hospital.
Assuntos
Academia , IndústriasRESUMO
BACKGROUND: Japan has four types of intensive care units (ICUs) that are divided into two categories according to the management fee charged per day: ICU management fees 1 and 2 (ICU1/2) (equivalent to high-intensity staffing) and 3 and 4 (ICU3/4) (equivalent to low-intensity staffing). Although ICU1/2 charges a higher rate than ICU3/4, no cost-effectiveness analysis has been performed for ICU1/2. This study evaluated the clinical outcomes and cost-effectiveness of ICU1/2 compared with those of ICU3/4. METHODS: This retrospective observational study used a nationwide Japanese administrative database to identify patients admitted to ICUs between April 2020 and March 2021 and divided them into the ICU1/2 and ICU3/4 groups. The ICU mortality rates and in-hospital mortality rates were determined, and the incremental cost-effectiveness ratio (ICER) (Japanese Yen (JPY)/QALY), defined as the difference between quality-adjusted life year (QALY) and medical costs, was compared between ICU1/2 and ICU3/4. Data analysis was performed using the Chi-squared test; an ICER of < 5 million JPY/QALY was considered cost-effective. RESULTS: The ICU1/2 group (n = 71,412; 60.7%) had lower ICU mortality rates (ICU 1/2: 2.6% vs. ICU 3/4: 4.3%, p < 0.001) and lower in-hospital mortality rates (ICU 1/2: 6.1% vs. ICU 3/4: 8.9%, p < 0.001) than the ICU3/4 group (n = 46,330; 39.3%). The average cost per patient of ICU1/2 and ICU3/4 was 2,249,270 ± 1,955,953 JPY and 1,682,546 ± 1,588,928 JPY, respectively, with a difference of 566,724. The ICER was 718,659 JPY/QALY, which was below the cost-effectiveness threshold. CONCLUSIONS: ICU1/2 is associated with lower ICU patient mortality than ICU3/4. Treatments under ICU1/2 are more cost-effective than those under ICU3/4, with an ICER of < 5 million JPY/QALY.
RESUMO
A mixed-valence heterometallic nonanuclear [3 × 3] grid complex, [CuI2CuII6FeIII(L)6](BF4)5·MeOH·9H2O (1; MeOH = methanol), was synthesized by a one-pot reaction of copper and iron ions with multidentate ligand 2,6-bis[5-(2-pyridinyl)-1H-pyrazol-3-yl]pyridine (H2L). 1 showed five quasi-reversible one-electron redox processes centered at +0.74, +0.60, +0.39, +0.27, and -0.13 V versus SCE, assignable to four CuI/CuII processes and one FeII/FeIII couple, respectively. The two-electron-oxidized species [CuII8FeIII(L)6](PF6)7·4MeOH·7H2O (12eOx), the two-electron-reduced species [CuI4CuII4FeIII(L)6](PF6)3·2H2O (12eRed), and the three-electron-reduced species [CuI4CuII4FeII(L)6](PF6)2·5MeOH·H2O (13eRed) were isolated electrochemically. The four redox isomers were characterized by single-crystal X-ray analysis, SQUID magnetometry, and Mössbauer spectroscopy.
RESUMO
Seed-mediated growth has been widely used to synthesize noble metal nanoparticles with controlled size and shape. Although it is becoming possible to directly observe the nucleation process of metal atoms at the single atom level by using transmission electron microscopy (TEM), it is challenging to control the formation and growth of seeds with only a few metal atoms in homogeneous solution systems. This work reports site-selective formation and growth of atomic scale seeds of the Au nanoparticle in a nanospace of an organic cage molecule. We synthesized a cage molecule with amines and phenols, which were found to both capture and reduce Au(III) ions to spontaneously form the atomic scale seeds containing Au(0) in the nanospace. The growth reaction of the atomic scale seeds afforded Au nanoparticles with an average diameter of 2.0±0.2â nm, which is in good agreement with the inner diameter of the cage molecule.
RESUMO
A multi-component coordination compound, in which ruthenium antenna complexes are connected to a polyoxotungstate core is presented. This hybrid cluster effectively promotes the electrochemical conversion of CO2 to C1 feedstocks, the selectivity of which can be controlled by the acidity of the media.
RESUMO
Invited for the cover of this issue is the group of Masayuki Nihei at the University of Tsukuba. The image depicts the electron transfer-triggered structural conversion of the supramolecular assembly of a [Co2 Fe2 ] complex between reverse vesicles and entangled one-dimensional chains. Read the full text of the article at 10.1002/chem.202300954.
RESUMO
Objectives: This study aimed to investigate the clinical features of arterial thrombosis and venous thromboembolism (VTE) in coronavirus disease 2019 (COVID-19). Methods: The CLOT-COVID Study was a retrospective, multicenter cohort study that enrolled 2,894 consecutively hospitalized patients with COVID-19 among 16 centers in Japan from April 2021 to September 2021. We compared the clinical features of arterial thrombosis and VTE. Results: Thrombosis was observed in 55 patients (1.9%) during hospitalization. Arterial thrombosis and VTE occurred in 12 (0.4%) and 36 (1.2%) patients, respectively. Among the 12 patients with arterial thrombosis, 9 (75%), 2 (17%), and 1 developed ischemic cerebral infarction, myocardial infarction, and acute limb ischemia, respectively, and there were five patients (42%) without comorbidities. Among 36 patients with VTE, 19 (53%) and 17 (47%) developed pulmonary embolism (PE) and deep vein thrombosis (DVT), respectively. PE was common in the early stages of hospitalization; whereas, DVT was common beyond the early stages of hospitalization. Conclusion: Among patients with COVID-19, arterial thrombosis was less common than VTE, although ischemic cerebral infarction seemed to be relatively common, and a certain number of patients developed arterial thrombosis even in the absence of known atherosclerosis risk factors.
RESUMO
We synthesized iron(II)-triazole spin crossover compounds of the type [Fe(atrz)3]X2 and incorporated and deposited them on electrospun polymer nanofibers. For this, we used two separate electrospinning methods with the goal of obtaining polymer complex composites with intact switching properties. In view of possible applications, we chose iron(II)-triazole-complexes that are known to exhibit spin crossover close to ambient temperature. Therefore, we used the complexes [Fe(atrz)3]Cl2 and [Fe(atrz)3](2ns)2 (2ns = 2-Naphthalenesulfonate) and deposited those on fibers of polymethylmethacrylate (PMMA) and incorporated them into core-shell-like PMMA fiber structures. These core-shell structures showed to be inert to outer environmental influences, such as droplets of water, which we purposely cast on the fiber structure, and it did not rinse away the used complex. We analyzed both the complexes and the composites with IR-, UV/Vis, Mössbauer spectroscopy, SQUID magnetometry, as well as SEM and EDX imaging. The analysis via UV/Vis spectroscopy, Mössbauer spectroscopy, and temperature-dependent magnetic measurements with the SQUID magnetometer showed that the spin crossover properties were maintained and were not changed after the electrospinning processes.
Assuntos
COVID-19 , Coinfecção , Legionella pneumophila , Legionella , Pneumonia , Humanos , SARS-CoV-2 , NaviosRESUMO
Combining metal complexes with amphiphilic molecules leads to a wide variety of functional self-assembled nanostructures. Metal complexes exhibiting spin transitions can be good candidates as the trigger to cause structural conversion of such assembly because they respond to various external stimuli. In this work, we studied a structural conversion of a supramolecular assembly containing a [Co2 Fe2 ] complex through a thermally induced electron transfer-coupled spin transition (ETCST). With an amphiphilic anion, the [Co2 Fe2 ] complex formed reverse vesicles in solution and showed thermal ETCST. In contrast, thermal ETCST in the presence of a bridging hydrogen-bond donor caused structural conversion from the reverse vesicle structure to entangled one-dimensional chains through hydrogen bond formation.
RESUMO
A pair of chiral Pt(II) complexes coordinated by simple BINOL and bipyridine ligands displaying aggregation-induced phosphorescence and circularly polarized luminescence were characterized by X-ray crystallography and absorption and emission spectroscopies. The emission of the powder sample was reddish whereas the thin film dispersed in PMMA (fPf = 1 wt%) exhibited a white emission.
RESUMO
A series of tetranuclear [Cu3Ln] complexes, [Cu3Gd(L)3(NO3)2(H2O)3](NO3)·H2O (1), [Cu3Tb(L)3(NO3)2(H2O)3](NO3) (2) and [Cu3Dy(L)3(NO3)3(H2O)2]·1.5(H2O) (3), were synthesized by a one-pot reaction using a simple tetraketone-type ligand (H2L = (3Z,5Z)-4,5-dihydroxy-3,5-octadiene-2,7-dione). X-ray structural analyses revealed that each complex has a planar tetranuclear core of [Cu3Ln] (Ln = Gd, Tb, and Dy), in which the Ln ion is accommodated in the centre of a Cu3O6 metallocycle. A cryomagnetic study revealed that all complexes show intramolecular ferromagnetic interactions between Cu(II) and Ln(III) ions. The [Cu3Gd] complex (1) has an ST = 5 spin ground state and shows a magneto-caloric effect with a maximum magnetic entropy change (-ΔSm) of 16.4 J kg-1 K-1 (5 T, 2.4 K). On the other hand, the [Cu3Tb] complex (2) shows a slow magnetic relaxation behavior under a zero magnetic field. The analysis of an Arrhenius plot reveals that the effective energy barrier of spin reversal is 13.1 K. The [Cu3Dy] complex (3) also shows a slow magnetic relaxation under 1300 Oe dc magnetic field with an effective energy barrier of 6.82 K.
RESUMO
One of the major issues encountered during the coronavirus disease 2019 (COVID-19) pandemic has been the shortage of intravenous anesthetics. Moreover, patients undergoing extracorporeal membrane oxygenation (ECMO) need large quantities of intravenous anesthetics for sedation. We report the case of a 52-year-old man who was admitted to our hospital due to acute respiratory distress syndrome by COVID-19 and treated with ECMO. As controlling sedation with intravenous anesthetics was challenging, we attempted to administer inhaled anesthetics via the gas flow of ECMO. We decreased the quantity of intravenous anesthetics and opioids. This method might help overcome the shortage of intravenous anesthetics.
Assuntos
Boidae , COVID-19 , Oxigenação por Membrana Extracorpórea , Masculino , Animais , Humanos , Pessoa de Meia-Idade , Sevoflurano , Anestésicos Intravenosos , Analgésicos OpioidesRESUMO
A series of trinuclear complexes, [MnII2YIII(L)2(HL)2(NO3)3][YIII(NO3)5]·7H2O (1'), [MnII2GdIII(HL)4(NO3)4]2[MnII2GdIII(L)(HL)3(NO3)4][GdIII(NO3)5]4·2(o-Xy)·12H2O (2') and [MnII3(L)(HL)2(NO3)4](NO3)·1.25(p-Xy) (3'), were synthesized using a ß-diketone ligand HL (HL = 1,3-bis(pyridin-2-yl)propane-1,3-dione). X-ray structural analyses revealed that each complex has a trinuclear core with an Mn(II)-M-Mn(II) arrangement (M = YIII (1), GdIII (2), and MnII (3)). In 1' with a diamagnetic Y(III) ion, negligible antiferromagnetic interactions between terminal Mn(II) ions are operative. On the other hand, 2' shows ferromagnetic interactions between Mn(II) and Gd(III) ions, affording a spin ground state of ST = 17/2. The homometallic Mn(II)3 complex of 3' has an ST = 5/2 spin ground state resulting from the antiferromagnetic interactions between neighboring Mn(II) ions. The maximum magnetic entropy change (-ΔSm) of 1'-3' was estimated to be 12.3, 24.8, and 8.0 J kg-1 K-1, respectively.
RESUMO
Acute respiratory distress syndrome (ARDS) is the leading cause of mortality in hospitalized patients with coronavirus disease 2019 (COVID-19) because of limited effective therapies. During infection, the accumulation and activation of macrophages and monocytes in the lungs induce inflammatory mediators and contribute to tissue injury, leading to ARDS. However, therapeutic strategies that directly target activated macrophage and monocytes have not been reported. Combination treatment with etoposide (a cytotoxic agent) and a corticosteroid has been widely used for treating hemophagocytic lymphohistiocytosis characterized by the systemic activation of macrophages with overwhelming inflammation. Herein, we present five cases of COVID-19-associated ARDS treated with etoposide and corticosteroids. Three of the five patients were over 65 years of age and had various underlying diseases, including multiple myeloma. Four patients required invasive mechanical ventilation (MV), and one patient refused to be placed on MV due to underlying diseases. All patients were pre-treated with antiviral and/or other anti-inflammatory agents, but their condition deteriorated and hyperinflammation was noted. All five patients responded well to treatment and had an immediate response, as reflected by improvement in their respiratory condition and inflammatory marker levels and rapid resolution of fever after etoposide administration; however, some patients required a second dose of etoposide and longer course of steroids. All patients recovered, and there were no severe adverse events related to the drugs. Following successful treatment in these five patients, we plan to conduct a clinical trial to evaluate the efficacy and safety of combination therapy with etoposide and corticosteroid for treating COVID-19 patients in Japan.
RESUMO
Mononuclear and icosanuclear spin-crossover complexes, [FeII(HL)2](BF4)2 (1) and [FeII20(L)24](BF4)16 (2), were synthesized using an asymmetric multidentate ligand (HL). 1 has a bis-chelate structure with two protonated ligands, while 2 has a ring-shape structure comprising four [2 × 2] grid moieties and four mononuclear units.
RESUMO
Monitoring the pain intensity in critically ill patients is crucial because intense pain can cause adverse events, including poor survival rates; however, continuous pain evaluation is difficult. Vital signs have traditionally been considered ineffective in pain assessment; nevertheless, the use of machine learning may automate pain assessment using vital signs. This retrospective observational study was performed at a university hospital in Sendai, Japan. Objective pain assessments were performed in eligible patients using the Critical-Care Pain Observation Tool (CPOT). Three machine-learning methods-random forest (RF), support vector machine (SVM), and logistic regression (LR)-were employed to predict pain using parameters, such as vital signs, age group, and sedation levels. Prediction accuracy was calculated as the harmonic mean of sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). Furthermore, 117,190 CPOT assessments were performed in 11,507 eligible patients (median age: 65 years; 58.0% males). We found that pain prediction was possible with all three machine-learning methods. RF demonstrated the highest AUROC for the test data (RF: 0.853, SVM: 0.823, and LR: 0.787). With this method, pain can be objectively, continuously, and semi-automatically evaluated in critically ill patients.