Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(7): 221, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317842

RESUMO

This study aims to enhance the solubility of Olaparib, classified as biopharmaceutical classification system (BCS) class IV due to its low solubility and bioavailability using a solid self-nanoemulsifying drug delivery system (S-SNEDDS). For this purpose, SNEDDS formulations were created using Capmul MCM as the oil, Tween 80 as the surfactant, and PEG 400 as the co-surfactant. The SNEDDS formulation containing olaparib (OLS-352), selected as the optimal formulation, showed a mean droplet size of 87.0 ± 0.4 nm and drug content of 5.53 ± 0.09%. OLS-352 also demonstrated anticancer activity against commonly studied ovarian (SK-OV-3) and breast (MCF-7) cancer cell lines. Aerosil® 200 and polyvinylpyrrolidone (PVP) K30 were selected as solid carriers, and S-SNEDDS formulations were prepared using the spray drying method. The drug concentration in S-SNEDDS showed no significant changes (98.4 ± 0.30%, 25℃) with temperature fluctuations during the 4-week period, demonstrating improved storage stability compared to liquid SNEDDS (L-SNEDDS). Dissolution tests under simulated gastric and intestinal conditions revealed enhanced drug release profiles compared to those of the raw drug. Additionally, the S-SNEDDS formulation showed a fourfold greater absorption in the Caco-2 assay than the raw drug, suggesting that S-SNEDDS could improve the oral bioavailability of poorly soluble drugs like olaparib, thus enhancing therapeutic outcomes. Furthermore, this study holds significance in crafting a potent and cost-effective pharmaceutical formulation tailored for the oral delivery of poorly soluble drugs.


Assuntos
Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Emulsões , Ftalazinas , Piperazinas , Solubilidade , Piperazinas/química , Piperazinas/administração & dosagem , Piperazinas/farmacocinética , Humanos , Ftalazinas/química , Ftalazinas/administração & dosagem , Ftalazinas/farmacocinética , Ftalazinas/farmacologia , Emulsões/química , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Química Farmacêutica/métodos , Tamanho da Partícula , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacologia , Tensoativos/química , Portadores de Fármacos/química , Polietilenoglicóis/química , Células MCF-7 , Liberação Controlada de Fármacos , Nanopartículas/química , Composição de Medicamentos/métodos
2.
J Mater Chem B ; 11(42): 10131-10146, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37830254

RESUMO

Atopic dermatitis is a chronic inflammatory skin condition that is characterized by skin inflammation, itching, and redness. Although various treatments can alleviate symptoms, they often come with side effects, highlighting the need for new treatments. Here, we discovered a new peptide-based therapy using the intra-dermal delivery technology (IDDT) platform developed by Remedi Co., Ltd (REMEDI). The platform screens and identifies peptides derived from proteins in the human body that possess cell-penetrating peptide (CPP) properties. We screened over 1000-peptides and identified several derived from the Speckled protein (SP) family that have excellent CPP properties and have anti-inflammatory effects. We assessed these peptides for their potential as a treatment for atopic dermatitis. Among them, the RMSP1 peptide showed the most potent anti-inflammatory effects by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) signaling pathways while possessing CPP properties. To further improve efficacy and stability, we developed a palmitoylated version called Pal-RMSP1. Formulation studies using liposomes (Pal-RMSP1 LP) and micelles (Pal-RMSP1 DP) demonstrated improved anti-inflammatory effects in vitro and enhanced therapeutic effects in vivo. Our study indicates that nano-formulated Pal-RMSP1 could have the potential to become a new treatment option for atopic dermatitis.


Assuntos
Dermatite Atópica , Nanopartículas , Humanos , Dermatite Atópica/tratamento farmacológico , NF-kappa B/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Anti-Inflamatórios/farmacologia
3.
Nano Today ; 512023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37484164

RESUMO

The presence of immunosuppressive immune cells in tumors is a significant barrier to the generation of therapeutic immune responses. Similarly, in vivo triple-negative breast cancer (TNBC) models often contain prevalent, immunosuppressive tumor-associated macrophages in the tumor microenvironment (TME), resulting in breast cancer initiation, invasion, and metastasis. Here, we test systemic chemoimmunotherapy using small-molecule agents, paclitaxel (PTX), and colony-stimulating factor 1 receptor (CSF1R) inhibitor, PLX3397, to enhance the adaptive T cell immunity against TNBCs in immunocompetent mouse TNBC models. We use high-capacity poly(2-oxazoline) (POx)-based polymeric micelles to greatly improve the solubility of insoluble PTX and PLX3397 and widen the therapeutic index of such drugs. The results demonstrate that high-dose PTX in POx, even as a single agent, exerts strong effects on TME and induces long-term immune memory. In addition, we demonstrate that the PTX and PLX3397 combination provides consistent therapeutic improvement across several TNBC models, resulting from the repolarization of the immunosuppressive TME and enhanced T cell immune response that suppress both the primary tumor growth and metastasis. Overall, the work emphasizes the benefit of drug reformulation and outlines potential translational path for both PTX and PTX with PLX3397 combination therapy using POx polymeric micelles for the treatment of TNBC.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37124157

RESUMO

Sorafenib, marketed under the brand name Nexavar®, is a multiple tyrosine kinase inhibitor drug that has been actively used in the clinical setting for the treatment of several cancers. However, the low solubility and bioavailability of sorafenib constitute a significant barrier to achieving a good therapeutic outcome. We developed a sorafenib-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation composed of capmul MCM, tween 80, and tetraglycol, and demonstrated that the SNEDDS formulation could improve drug solubility with excellent self-emulsification ability. Moreover, the sorafenib-loaded SNEDDS exhibited anticancer activity against Hep3B and KB cells, which are the most commonly used hepatocellular carcinoma and oral cancer cell lines, respectively. Subsequently, to improve the storage stability and to increase the possibility of commercialization, a solid SNEDDS for sorafenib was further developed through the spray drying method using Aerosil® 200 and PVP K 30. X-ray diffraction and differential scanning calorimeter data showed that the crystallinity of the drug was markedly reduced, and the dissolution rate of the drug was further improved in formulation in simulated gastric and intestinal fluid conditions. In vivo study, the bioavailability of the orally administered formulation increases dramatically compared to the free drug. Our results highlight the use of the solid-SNEDDS formulation to enhance sorafenib's bioavailability and outlines potential translational directions for oral drug development.

5.
J Control Release ; 359: 52-68, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220804

RESUMO

The combination of photothermal therapy and chemotherapy has been considered a promising strategy for improving the excellent antitumor activities of these treatments. In this study, we developed a new simple type of pH-sensitive chemo-photothermal combination agent capable of repeated exposures to a near-infrared (NIR) laser and evaluated its anticancer efficacy in vitro and in vivo. Doxorubicin (Dox) and gold nanoclusters (GNCs) were successfully co-loaded into pH-sensitive nanoparticles (poly(ethylene glycol)-poly[(benzyl-l-aspartate)-co-(N-(3-aminopropyl)imidazole-L-aspartamide)] (PEG-PABI)), resulting in a particle size of approximately120 nm with a narrow size distribution. The dual drug-loaded nanoparticles (Dox/GNC-loaded PEG-PABI micelles (Dox/GNC-Ms)) showed consistent pH-sensitive properties and heat generation efficiency after repeated NIR laser exposure. In particular, GNC-M has improved photothermal stability while maintaining high photothermal conversion efficiency, addressing the shortcomings of previous gold nanoparticles. As the concentration of GNC-Ms, irradiation light exposure time, and light source intensity increased, the amount of heat generated and the anticancer effect increased. When Dox was encapsulated with GNCs (Dox/GNC-Ms), a faster drug release rate under acidic pH conditions and a strong synergistic effect against U87MG cells were observed. When the Dox/GNC-M system was extended to in vivo studies, it effectively increased the temperature of the tumor tissue under near-infrared irradiation and showed excellent anticancer efficacy. Therefore, the Dox/GNC-M system could be a simple but promising strategy for chemo-photothermal combination treatment capable of targeting acidic tumors.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Ouro/química , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Doxorrubicina/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
6.
Int J Nanomedicine ; 18: 1615-1630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020691

RESUMO

Introduction: Ligand-conjugated liposomes are promising for the treatment of specific receptor-overexpressing cancers. However, previous studies have shown inconsistent results because of the varying properties of the ligand, presence of a polyethylene glycol (PEG) coating on the liposome, length of the linker, and density of the ligand. Methods: Here, we prepared PEGylated liposomes using PEG-linkers of various lengths conjugated with folate and evaluated the effect of the PEG-linker length on the nanoparticle distribution and pharmacological efficacy of the encapsulated drug both in vitro and in vivo. Results: When folate was conjugated to the liposome surface, the cellular uptake efficiency in folate receptor overexpressed KB cells dramatically increased compared to that of the normal liposome. However, when comparing the effect of the PEG-linker length in vitro, no significant difference between the formulations was observed. In contrast, the level of tumor accumulation of particles in vivo significantly increased when the length of the PEG-linker was increased. The tumor size was reduced by >40% in the Dox/FL-10K-treated group compared to that in the Dox/FL-2K- or 5K-treated groups. Discussion: Our study suggests that as the length of PEG-linker increases, the tumor-targeting ability can be enhanced under in vivo conditions, which can lead to an increase in the antitumor activity of the encapsulated drug.


Assuntos
Ácido Fólico , Lipossomos , Humanos , Ligantes , Polietilenoglicóis , Composição de Medicamentos
7.
Artigo em Inglês | MEDLINE | ID: mdl-36141438

RESUMO

Older adults suffering from mistreatment are especially vulnerable to adverse health outcomes. The current study examined the associations of elder mistreatment (single- and multi-type mistreatment) with depression or suicidal ideation in a Korean representative sample. The data were derived from the 2017 National Survey of Living Conditions and Welfare Needs of Korean Older Persons (unweighted n = 10,059 and weighted n = 10,055). Descriptive statistics and multivariate logistic regression analyses were performed. In the weighted population, 9.8% of older adults had mistreatment experiences. Results indicated that single- and multi-type mistreatment experiences were associated with increased risks of depression (OR = 1.93, 95% CI = [1.61, 2.32] and OR = 3.51, 95% CI = [2.52, 4.87], respectively), after adjusting for the confounding factors (socio-demographic, health-related, and social relation characteristics). Experiences of single- and multi-type mistreatment were also associated with suicidal ideation (OR = 2.48, 95% CI = [1.97, 3.12] and OR = 3.19, 95% CI = [2.25, 4.51], respectively), even after adjusting for the above confounding factors and depression. Similar results were found in sensitivity analyses using unweighted data. The current findings expanded our knowledge of the associations of mistreatment with depression and suicidal ideation in later life.


Assuntos
Abuso de Idosos , Ideação Suicida , Idoso , Idoso de 80 Anos ou mais , Depressão/epidemiologia , Humanos , República da Coreia/epidemiologia , Fatores de Risco
8.
Int J Nanomedicine ; 16: 5437-5449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408417

RESUMO

PURPOSE: An AE147 peptide-conjugated nanocarrier based on PEGylated liposomes was developed in order to target the metastatic tumors overexpressing urokinase-type plasminogen activator receptor (uPAR), which cancer progression via uPA signaling. Therefore, the AE147 peptide-conjugated nanocarrier system may hold the potential for active targeting of metastatic tumors. METHODS: The AE147 peptide, an antagonist of uPAR, was conjugated to the PEGylated liposomes for targeting metastatic tumors overexpressing uPAR. Docetaxel (DTX), an anticancer drug, was incorporated into the nanocarriers. The structure of the AE147-conjugated nanocarrier, its physicochemical properties, and in vivo biodistribution were evaluated. RESULTS: The DTX-loaded nanocarrier showed a spherical structure, a high drug-loading capacity, and a high colloidal stability. Drug carrying AE147 conjugates were actively taken up by the uPAR-overexpressing MDA-MB-231 cancer cells. In vivo animal imaging confirmed that the AE147-conjugated nanoparticles effectively accumulated at the sites of tumor metastasis. CONCLUSION: The AE147-nanocarrier showed potential for targeting metastatic tumor cells overexpressing uPAR and as a nanomedicine platform for theragnosis applications. These results suggest that this novel nano-platform will facilitate further advancements in cancer therapy.


Assuntos
Neoplasias , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Animais , Peptídeos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais , Distribuição Tecidual , Ativador de Plasminogênio Tipo Uroquinase
9.
Pharmaceutics ; 13(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069233

RESUMO

The combination of nanotechnology and chemotherapy has resulted in more effective drug design via the development of nanomaterial-based drug delivery systems (DDSs) for tumor targeting. Stimulus-responsive DDSs in response to internal or external signals can offer precisely controlled delivery of preloaded therapeutics. Among the various DDSs, the photo-triggered system improves the efficacy and safety of treatment through spatiotemporal manipulation of light. Additionally, pH-induced delivery is one of the most widely studied strategies for targeting the acidic micro-environment of solid tumors. Accordingly, in this review, we discuss representative strategies for designing DDSs using light as an exogenous signal or pH as an endogenous trigger.

10.
Biomedicines ; 8(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339198

RESUMO

The use of photo-based nanomedicine in imaging and therapy has grown rapidly. The property of light in converting its energy into different forms has been exploited in the fields of optical imaging (OI) and phototherapy (PT) for diagnostic and therapeutic applications. The development of nanotechnology offers numerous advantages to overcome the challenges of OI and PT. Accordingly, in this review, we shed light on common photosensitive agents (PSAs) used in OI and PT; these include fluorescent and bioluminescent PSAs for OI or PT agents for photodynamic therapy (PDT) and photothermal therapy (PTT). We also describe photo-based nanotechnology systems that can be used in photo-based diagnostics and therapies by using various polymeric systems.

11.
Pharmaceutics ; 12(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887273

RESUMO

Combination therapy is considered to be a promising strategy for improving the therapeutic efficiency of cancer treatment. In this study, an on-demand pH-sensitive nanocluster (NC) system was prepared by the encapsulation of gold nanorods (AuNR) and doxorubicin (DOX) by a pH-sensitive polymer, poly(aspartic acid-graft-imidazole)-PEG, to enhance the therapeutic effect of chemotherapy and photothermal therapy. At pH 6.5, the NC systems formed aggregated structures and released higher drug amounts while sustaining a stable nano-assembly, structured with less systemic toxicity at pH 7.4. The NC could also increase antitumor efficacy as a result of improved accumulation and release of DOX from the NC system at pHex and pHen with locally applied near-infrared light. Therefore, an NC system would be a potent strategy for on-demand combination treatment to target tumors with less systemic toxicity and an improved therapeutic effect.

12.
Arch Pharm Res ; 43(1): 46-57, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993968

RESUMO

Over the past few decades, hyperthermia therapy (HTT) has become one of the most promising strategies to treat cancer. HTT has been applied with nanotechnology to overcome drawbacks such as non-selectivity and invasiveness and to maximize therapeutic efficacy. The high temperature of HTT induces protein denaturation that leads to apoptosis or necrosis. It can also enhance the effects of other cancer therapies because heat-damaged tissues reduce radioresistance and help accumulate anticancer drugs. Gold nanoparticles and superparamagnetic iron oxide with different energy sources are commonly used as hyperthermia agents. New types of nanoparticles such as those whose surface is coated with several polymers and those modified with targeting moieties have been studied as novel HTT agents. In this review, we introduce principles and applications of nanotechnology-based HTT using gold nanoparticles and superparamagnetic iron oxide.


Assuntos
Antineoplásicos/uso terapêutico , Ouro/química , Hipertermia Induzida , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Compostos Férricos/química , Humanos
13.
Pharmaceutics ; 11(6)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234389

RESUMO

Nanotechnology-based photo-chemo combination therapy has been extensively investigated to improve therapeutic outcomes in anticancer treatment. Specifically, with the help of a singlet oxygen generated by the photosensitizer, the endocytosed nanoparticles are allowed to escape from the endosomal compartment, which is currently an obstacle in nanotechnology-based anticancer therapy. In this study, a liposomal complex system (Lipo (Pep, Ce6)), composed of a chlorin e6-conjugated di-block copolymer (PEG-PLL(-g-Ce6)) and a D-(KLAKLAK)2 peptide loading liposome (Lipo (Pep)), was developed and evaluated for its anticancer activity. Due to the membrane lytic ability of the D-(KLAKLAK)2 peptide and the membrane disruptive effect of the singlet oxygen generated from chlorin e6, Lipo (Pep, Ce6) accelerated the disruption of the endosomal compartment, and exhibited strong synergistic anticancer activity in vitro. The prepared liposomal complex system could potentially maximize the efficacy of the nanotechnology-based photo-chemo combination therapy, and can be regarded as a novel, versatile strategy in advanced tumor therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...