Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 121(5): 055001, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118250

RESUMO

Efficient lower hybrid current drive (LHCD) is demonstrated at densities up to n[over ¯]_{e}≈1.5×10^{20} m^{-3} in diverted plasmas on the Alcator C-Mod tokamak by operating at increased plasma current-and therefore reduced Greenwald density fraction. This density exceeds the nominal "LH density limit" at n[over ¯]_{e}≈1.0×10^{20} m^{-3} reported previously, above which an anomalous loss of current drive efficiency was observed. The recovery of current drive efficiency to a level consistent with engineering scalings is correlated with a reduction in density shoulders and turbulence levels in the far scrape-off layer. Concurrently, rf wave interaction with the edge and/or scrape-off-layer plasma is reduced, as indicated by a minimal broadening of the wave frequency spectrum measured at the plasma edge. These results have important implications for sustaining steady-state tokamak operation and indicate a pathway forward for implementing efficient LHCD in a reactor.

2.
Phys Rev Lett ; 111(12): 125003, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24093268

RESUMO

Application of lower hybrid (LH) current drive in tokamak plasmas can induce both co- and countercurrent directed changes in toroidal rotation, depending on the core q profile. For discharges with q(0) <1, rotation increments in the countercurrent direction are observed. If the LH-driven current is sufficient to suppress sawteeth and increase q(0) above unity, the core toroidal rotation change is in the cocurrent direction. This change in sign of the rotation increment is consistent with a change in sign of the residual stress (the divergence of which constitutes an intrinsic torque that drives the flow) through its dependence on magnetic shear.

3.
Rev Sci Instrum ; 83(10): 10E325, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126983

RESUMO

Backscattering experiments to detect lower-hybrid (LH) waves have been performed in Alcator C-Mod, using the two modified channels (60 GHz and 75 GHz) of an ordinary-mode reflectometry system with newly developed spectral recorders that can continuously monitor spectral power at a target frequency. The change in the baseline of the spectral recorder during the LH wave injection is highly correlated to the strength of the X-mode non-thermal electron cyclotron emission. In high density plasmas where an anomalous drop in the lower hybrid current drive efficiency is observed, the observed backscattered signals are expected to be generated near the last closed flux surface, demonstrating the presence of LH waves within the plasma. This experimental technique can be useful in identifying spatially localized LH electric fields in the periphery of high-density plasmas.

4.
Rev Sci Instrum ; 81(10): 10D936, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033964

RESUMO

The possibility of directly detecting a density perturbation produced by lower hybrid (LH) waves using a reflectometer is presented. We investigate the microwave scattering of reflectometer probe beams by a model density fluctuation produced by short wavelength LH waves in an Alcator C-Mod experimental condition. In the O-mode case, the maximum response of phase measurement is found to occur when the density perturbation is approximately centimeters in front of the antenna, where Bragg scattering condition is satisfied. In the X-mode case, the phase measurement is predicted to be more sensitive to the density fluctuation close to the cut-off layer. A feasibility test was carried out using a 50 GHz O-mode reflectometer on the Alcator C-Mod tokamak, and positive results including the detection of 4.6 GHz pump wave and parametric decay instabilities were obtained.

5.
Phys Rev Lett ; 102(3): 035002, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19257362

RESUMO

In Alcator C-Mod discharges lower hybrid waves have been shown to induce a countercurrent change in toroidal rotation of up to 60 km/s in the central region of the plasma (r/a approximately <0.4). This modification of the toroidal rotation profile develops on a time scale comparable to the current redistribution time (approximately 100 ms) but longer than the energy and momentum confinement times (approximately 20 ms). A comparison of the co- and countercurrent injected waves indicates that current drive (as opposed to heating) is responsible for the rotation profile modifications. Furthermore, the changes in central rotation velocity induced by lower hybrid current drive (LHCD) are well correlated with changes in normalized internal inductance. The application of LHCD has been shown to generate sheared rotation profiles and a negative increment in the radial electric field profile consistent with a fast electron pinch.

6.
Phys Rev Lett ; 96(18): 185003, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16712369

RESUMO

The first successful high power heating of a high dielectric constant spherical tokamak plasma by an electron Bernstein wave (EBW) is reported. An EBW was excited by mode conversion (MC) of an mode cyclotron wave injected from the low magnetic field side of the TST-2 spherical tokamak. Evidence of electron heating was observed as increases in the stored energy and soft x-ray emission. The increased emission was concentrated in the plasma core region. A heating efficiency of over 50% was achieved, when the density gradient in the MC region was sufficiently steep.

7.
Phys Rev Lett ; 92(3): 035001, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14753880

RESUMO

A new operational scenario of advanced tokamak formation was demonstrated in the JT-60U tokamak. This was accomplished by electron cyclotron and lower hybrid waves, neutral beam injection, and the loop voltage supplied by the vertical field and shaping coils. The Ohmic heating (OH) solenoid was not used but a small inboard coil (part of the shaping coil), providing less than 20% of total poloidal flux, was used. The plasma thus obtained had both internal and edge transport barriers, with an energy confinement time of 1.6 times H-mode scaling, a poloidal beta of 3.6, and a normalized beta of 1.6, and a large bootstrap current fraction (>90%). This result opens up a possibility to reduce, and eventually eliminate, the OH solenoid from a tokamak reactor, which will greatly improve its economic competitiveness.

8.
Phys Rev Lett ; 90(16): 165001, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12731979

RESUMO

In the CDX-U spherical torus, agreement between radiation temperature and Thomson scattering electron temperature profiles indicates approximately 100% conversion of thermally emitted electron Bernstein waves to the X mode. This has been achieved by controlling the electron density scale length (L(n)) in the conversion region with a local limiter outside the last closed flux surface, shortening L(n) to the theoretically required value for optimal conversion. From symmetry of the conversion process, prospects for efficient coupling in heating and current drive scenarios are strongly supported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...