Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1403974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746079

RESUMO

Introduction: Multiple sclerosis (MS) is one of the most common causes of disability in young adults. Nearly, 85% of MS cases start with attacks and remissions, classified as relapsing-remitting multiple sclerosis (RRMS). With repeating attacks, MS causes brain-spinal cord atrophy and enhanced disability as disease progresses. PLP-induced EAE is one of the most established models for pathophysiology and treatment of RRMS. Recent studies demonstrated the possible role of pericytes in perivascular and intra-lesional fibrosis in PLP-induced EAE, whose importance remains elusive. Hence, we have investigated the possible role of pericytes in fibrosis formation and amelioration with a hemichannel blocker, Carbenoxolone (CBX). Methods: PLP-induced experimental autoimmune encephalitis (EAE) model is used and the effect of CBX is investigated. Clinical scores were recorded and followed. Perivascular Collagen 1 and 3 accumulations were demonstrated as markers of fibrosis in the spinal cord. To delineate the role of pericytes, human brain vascular pericytes (HBVP) were incubated with the sera of MS patients to induce in-vitro MS model and the fibrosis formation was investigated. Results: In the PLP induced in-vivo model, both intracerebroventricular and intraperitoneal CBX have significantly mitigated the disease progression followed by clinical scores, demyelination, and fibrosis. Moreover, CBX significantly mitigated MS-serum-induced fibrosis in the HBVP cell culture. Discussion: The study demonstrated two important findings. First, CBX decreases fibrosis formation in both in-vivo and in-vitro MS models. Secondly, it improves neurological scores and decreases demyelination in the EAE model. Therefore, CBX can be potential novel therapeutic option in treating Multiple Sclerosis.

2.
Adv Mater ; 36(2): e2304704, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709513

RESUMO

Dermal interstitial fluid (ISF) is emerging as a rich source of biomarkers that complements conventional biofluids such as blood and urine. However, the impact of ISF sampling in clinical applications has been limited owing to the challenges associated with extraction. The implementation of microneedle-based wearable devices that can extract dermal ISF in a pain-free and easy-to-use manner has attracted growing attention in recent years. Here, a fully integrated touch-activated wearable device based on a laser-drilled hollow microneedle (HMN) patch for continuous sampling and sensing of dermal ISF is introduced. The developed platform can produce and maintain the required vacuum pressure (as low as ≈ -53 kPa) to collect adequate volumes of ISF (≈2 µL needle-1 h-1 ) for medical applications. The vacuum system can be activated through a one-touch finger operation. A parametric study is performed to investigate the effect of microneedle array size, vacuum pressure, and extraction duration on collected ISF. The capability of the proposed platform for continuous health monitoring is further demonstrated by the electrochemical detection of glucose and pH levels of ISF in animal models. This HMN-based system provides an alternative tool to the existing invasive techniques for ISF collection and sensing for medical diagnosis and treatment.


Assuntos
Líquido Extracelular , Dispositivos Eletrônicos Vestíveis , Animais , Tato , Glucose , Agulhas
3.
Metab Brain Dis ; 38(1): 307-321, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305999

RESUMO

Both type-1 and type-2 DM are related to an increased risk of cognitive impairment, neurovascular complications, and dementia. The primary triggers for complications are hyperglycemia and concomitant insulin resistance in type-2 DM. However, the diverse mechanisms in the pathogenesis of diabetes-related neurovascular complications and extracellular matrix (ECM) remodeling in type-1 and 2 have not been elucidated yet. Here, we investigated the high fat-high sucrose (HFHS) feeding model and streptozotocin-induced type-1 DM model to study the early effects of hyperglycemia with or without insulin resistance to demonstrate the brain microcirculatory changes, perivascular ECM alterations in histological sections and 3D-reconstructed cleared brain tissues. One of the main findings of this study was robust rarefaction in brain microvessels in both models. Interestingly, the HFHS model leads to widespread non-functional angiogenesis, but the type-1 DM model predominantly in the rostral brain. Rarefaction was accompanied by basement membrane thickening and perivascular collagen accumulation in type-1 DM; more severe blood-brain barrier leakage, and disruption of perivascular ECM organization, mainly of elastin and collagen fibers' structural integrity in the HFHS model. Our results point out that the downstream mechanisms of the long-term vascular complications of hyperglycemia models are structurally distinctive and may have implications for appropriate treatment options.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Humanos , Microcirculação , Encéfalo/patologia , Hiperglicemia/patologia , Diabetes Mellitus Tipo 2/patologia
4.
Front Neurosci ; 16: 1041461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704003

RESUMO

Alzheimer's disease (AD) is a predominantly heterogeneous disease with a highly complex pathobiology. The presence of amyloid-beta (Aß) depositions and the accumulation of hyperphosphorylated tau protein remain the characteristic hallmarks of AD. These hallmarks can be detected throughout the brain and other regions, including cerebrospinal fluid (CSF) and the spinal cord. Microglia cells, the brain-resident macrophage type of the brain, are implicated in maintaining healthy brain homeostasis. The localized administration of primary healthy microglia (PHM) is suggested to play a role in mitigating AD hallmark depositions and associated cognitive dysfunction. Carbenoxolone (CBX) is the most common gap junction blocker. It cannot effectively cross the blood-brain barrier (BBB) under systemic administration. Therefore, localized administration of CBX may be a recommended intervention against AD by acting as an antioxidant and anti-inflammatory agent. This study aims to determine whether the localized intracerebroventricular (ICV) administration of PHM and CBX may act as an effective therapeutic intervention for AD neuroinflammatory type. In addition, this study also aims to reveal whether detecting AD hallmarks in the spinal cord and CSF can be considered functional and effective during AD early diagnosis. Male albino rats were divided into four groups: control (group 1), lipopolysaccharide (LPS)-induced AD neuroinflammatory type (group 2), ICV injection of LPS + isolated PHM (group 3), and ICV injection of LPS + CBX (group 4). Morris water maze (MWM) was conducted to evaluate spatial working memory. The brain and spinal cord were isolated from each rat with the collection of CSF. Our findings demonstrate that the localized administration of PHM and CBX can act as promising therapeutic approaches against AD. Additionally, Aß and tau toxic aggregates were detected in the spinal cord and the CSF of the induced AD model concomitant with the brain tissues. Overall, it is suggested that the ICV administration of PHM and CBX can restore normal brain functions and alleviate AD hallmark depositions. Detecting these depositions in the spinal cord and CSF may be considered in AD early diagnosis. As such, conducting clinical research is recommended to reveal the benefits of related therapeutic approaches compared with preclinical findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...