Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Phys Chem Chem Phys ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967480

RESUMO

Quantum spin liquids (QSLs) have become prominent materials of interest in the pursuit of fault-tolerant materials for quantum computing applications. This is due to the fact that these materials are theorized to host an interesting variety of quantum phenomena such as quasi-particles that may behave as anyons as a result of the high entangled nature of the spin states within the systems. Computing the electronic and magnetic properties of these materials is necessary in order to understand the underlying interactions of the materials. In this paper, the structural, electronic, and magnetic properties including lattice parameters, bandgap, Heisenberg coupling constants, and Curie temperatures for α-RuCl3, a promising candidate for the Kitaev QSL model, are computed using periodic density functional theory. Furthermore, various parameters of the calculations (i.e. functional choice, basis set, k-point density, and Hubbard correction) are varied in order to determine what effect, if any, the computational setup has on the computed properties. The results of this study indicate that PBE functional with Hubbard corrections of 1.5-2.5 eV with a k-point density of 3.0 points per Å-1 appear to be the best parameters to compute Heisenberg coupling constants for α-RuCl3. These parameters with the addition of spin orbit coupling works well for computing Curie temperatures for α-RuCl3. Distinct differences are noted in the computations of the bulk structure vs. monolayer structures, indicating that interactions between the layers play a role in the material properties and changes to the inter-layer spacing may result in interesting and unique magnetic properties that require further investigation.

2.
J Hazard Mater ; 473: 134628, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795480

RESUMO

Methyl isocyanate (MIC) is a toxic chemical found in many commercial, industrial, and agricultural processes, and was the primary chemical involved in the Bhopal, India disaster of 1984. The atmospheric environmental chemical reactivity of MIC is relatively unknown with only proposed reaction channels, mainly involving OH-initiated reactions. The gas-phase degradation reaction pathways of MIC and its primary product, formyl isocyanate (FIC), were investigated with quantum mechanical (QM) calculations to assess the fate of the toxic chemical and its primary transformation products. Transition state energy barriers and reaction energetics were evaluated for thermolysis/pyrolysis-like reactions and bimolecular reactions initiated by relevant radicals (•OH and Cl•) to evaluate the potential energy surfaces and identify the primary reaction pathways and products. Thermolysis/pyrolysis of MIC requires high energy to initiate N-CH3 and C-H bond dissociation and is unlikely to dissociate except under extreme conditions. Bimolecular radical addition and H-abstraction reaction pathways are deemed the most kinetically and thermodynamically favorable mechanisms. The primary transformation products of MIC were identified as FIC, methylcarbamic acid, isocyanic acid (isocyanate radical), and carbon dioxide. The results of this work inform the gas-phase reaction channels of MIC and FIC reactivity and identify transformation products under various reaction conditions.

3.
ACS Omega ; 9(13): 14887-14898, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585113

RESUMO

Polylactic acid (PLA) and poly(ethylene terephthalate glycol) (PETG) are popular thermoplastics used in additive manufacturing applications. The mechanical properties of PLA and PETG can be significantly improved by introducing fillers, such as glass and iron nanoparticles (NPs), into the polymer matrix. Molecular dynamics (MD) simulations with the reactive INTERFACE force field were used to predict the mechanical responses of neat PLA/PETG and PLA-glass/iron and PETG-glass/iron nanocomposites with relatively high loadings of glass/iron NPs. We found that the iron and glass NPs significantly increased the elastic moduli of the PLA matrix, while the PETG matrix exhibited modest increases in elastic moduli. This difference in reinforcement ability may be due to the slightly greater attraction between the glass/iron NP and PLA matrix. The NASA Multiscale Analysis Tool was used to predict the mechanical response across a range of volume percent glass/iron filler by using only the neat and highly loaded MD predictions as input. This provides a faster and more efficient approach than creating multiple MD models per volume percent per polymer/filler combination. To validate the micromechanics predictions, experimental samples incorporating hollow glass microspheres (MS) and carbonyl iron particles (CIP) into PLA/PETG were developed and tested for elastic modulus. The CIP produced a larger reinforcement in elastic modulus than the MS, with similar increases in elastic modulus between PLA/CIP and PETG/CIP at 7.77 vol % CIP. The micromechanics-based mechanical predictions compare excellently with the experimental values, validating the integrated micromechanical/MD simulation-based approach.

4.
ACS Omega ; 8(47): 44942-44954, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046318

RESUMO

Although water is essential for life, as per the United Nations, around 2 billion people in this world lack access to safely managed drinking water services at home. Herein we report the development of a two-dimensional (2D) fluorinated graphene oxide (FGO) and polyethylenimine (PEI) based three-dimensional (3D) porous nanoplatform for the effective removal of polyfluoroalkyl substances (PFAS), pharmaceutical toxins, and waterborne pathogens from contaminated water. Experimental data show that the FGO-PEI based nanoplatform has an estimated adsorption capacity (qm) of ∼219 mg g-1 for perfluorononanoic acid (PFNA) and can be used for 99% removal of several short- and long-chain PFAS. A comparative PFNA capturing study using different types of nanoplatforms indicates that the qm value is in the order FGO-PEI > FGO > GO-PEI, which indicates that fluorophilic, electrostatic, and hydrophobic interactions play important roles for the removal of PFAS. Reported data show that the FGO-PEI based nanoplatform has a capability for 100% removal of moxifloxacin antibiotics with an estimated qm of ∼299 mg g-1. Furthermore, because the pore size of the nanoplatform is much smaller than the size of pathogens, it has a capability for 100% removal of Salmonella and Escherichia coli from water. Moreover, reported data show around 96% removal of PFAS, pharmaceutical toxins, and pathogens simultaneously from spiked river, lake, and tap water samples using the nanoplatform.

5.
Chemosphere ; 345: 140462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866495

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are extremely stable compounds due to their strong C-F bonds. They are used in water and stain proof coatings, aqueous film forming foams for fire suppression, cosmetics, paints, adhesives, etc. PFAS have been found in soils and waterways around the world due to their widespread usage and recalcitrance to degradation. Development of selective adsorbent materials is necessary to effectively capture a vast family of PFAS structures in order to remediate PFAS contamination in the environment. The work herein is focused on extracting design principles from molecular dynamics simulations of PFAS with functionalized graphene materials. Simulations examined how PFBA, PFOA, and PFOS interact with graphene, graphene oxide, nitrogen group-functionalized graphene oxide, partially fluorinated graphene flakes, and fully fluorinated flakes. Five flakes were used in each simulation to examine how interactions between flakes may lead to competitive interactions with respect to PFAS or formation of pores. Our study revealed that both the clustering mechanisms of the flakes and functional groups on the flake play a role in PFAS adsorption. The most effective functionalizations for PFAS adsorption are as follows: pristine graphene ≈ fully fluorinated > graphene oxide ≈ partially fluorinated > amine and amide functionalized graphene oxide flake. Long chain PFAS and sulfonate PFAS had higher propensity to adsorb to the materials compared to short chain PFAS and carboxylic head groups.


Assuntos
Fluorocarbonos , Grafite , Poluentes Químicos da Água , Simulação de Dinâmica Molecular , Adsorção , Fluorocarbonos/análise , Água , Poluentes Químicos da Água/análise
6.
J Endocrinol ; 257(1)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655849

RESUMO

Thyroid hormones (TH) are vital for brain functions, while TH deficiency, i.e. hypothyroidism, induces neurological impairment in children and adults. Cerebellar neuronal apoptosis and motor deficits are crucial events in hypothyroidism; however, the underlying mechanism is less-known. Using a methimazole-treated hypothyroidism rat model, we investigated cerebellar autophagy, growth factor, and apoptotic mechanisms that participate in motor functions. We first identified that methimazole up-regulated cerebellar autophagy, marked by enhanced LC3B-II, Beclin-1, ATG7, ATG5-12, p-AMPKα/AMPKα, and p62 degradation as well as reduced p-AKT/AKT, p-mTOR/mTOR, and p-ULK1/ULK1 in developing and young adult rats. We probed upstream effectors of this abnormal autophagy and detected a methimazole-induced reduction in cerebellar phospho-epidermal growth factor receptor (p-EGFR)/EGFR and heparin-binding EGF-like growth factor (HB-EGF). Here, while a thyroxine-induced TH replenishment alleviated autophagy process and restored HB-EGF/EGFR, HB-EGF treatment regulated AKT-mTOR and autophagy signaling in the cerebellum. Moreover, neurons of the rat cerebellum demonstrated this reduced HB-EGF-dependent increased autophagy in hypothyroidism. We further checked whether the above events were related to cerebellar neuronal apoptosis and motor functions. We detected that comparable to thyroxine, treatment with HB-EGF or autophagy inhibitor, 3-MA, reduced methimazole-induced decrease in Nissl staining and increase in c-Caspase-3 and TUNEL-+ve apoptotic count of cerebellar neurons. Additionally, 3-MA, HB-EGF, and thyroxine attenuated the methimazole-induced diminution in riding time on rota-rod and grip strength for the motor performance of rats. Overall, our study enlightens HB-EGF/EGFR-dependent autophagy mechanism as a key to cerebellar neuronal loss and functional impairments in developmental hypothyroidism, which may be inhibited by HB-EGF and 3-MA treatments, like thyroxine.


Assuntos
Hipotireoidismo , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Autofagia , Cerebelo/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Hipotireoidismo/induzido quimicamente , Metimazol/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tiroxina , Serina-Treonina Quinases TOR/metabolismo
7.
Langmuir ; 38(44): 13414-13428, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36279412

RESUMO

The urease enzyme is commonly used in microbially induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) to heal and strengthen soil. Improving our understanding of the adsorption of the urease enzyme with various soil surfaces can lead to advancements in the MICP and EICP engineering methods as well as other areas of soil science. In this work, we use density functional theory (DFT) to investigate the urease enzyme's binding ability with four common arid soil components: quartz, corundum, albite, and hematite. As the urease enzyme cannot directly be simulated with DFT due to its size, the amino acids comprising at least 5% of the urease enzyme were simulated instead. An adsorption model incorporating the Gibbs free energy was used to determine the existence of amino acid-mineral binding modes. It was found that the nine simulated amino acids bind preferentially to the different soil components. Alanine favors corundum, glycine and threonine favor hematite, and aspartic acid favors albite. It was found that, under the standard environmental conditions considered here, amino acid binding to quartz is unfavorable. In the polymeric form where the side chains would dominate the binding interactions, hematite favors aspartic acid through its R-OH group and corundum favors glutamic acid through its R-Ket group. Overall, our model predicts that the urease enzyme produced by Sporosarcina pasteurii can bind to various oxides found in arid soil through its alanine, glycine, aspartic/glutamic acid, or threonine residues.


Assuntos
Solo , Urease , Urease/metabolismo , Adsorção , Aminoácidos , Quartzo , Ácido Aspártico , Carbonato de Cálcio/química , Carbonatos , Glicina , Alanina , Óxido de Alumínio , Treonina , Glutamatos
8.
Chemosphere ; 308(Pt 2): 136351, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36084830

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have become global environmental contaminants due to being notoriously difficult to degrade, and it has become increasingly important to employ suitable PFAS alternatives, especially in aqueous film-forming foams (AFFF). Trimethylsiloxane (TriSil) surfactants are potential fluorine-free replacements for PFAS in fire suppression technologies. Yet because these compounds may be more susceptible to high-temperature decomposition, it is necessary to assess the potential environmental impact of their thermal degradation products. Our study analyzes the high-temperature degradation of a truncated trimethylsiloxane (TriSil-1n) surfactant based on quantum mechanical methods. The degradation chemistry of TriSil-1n was studied through radical formation and propagation initiated from two prominent pathways (unimolecular and bimolecular reactions) at both 298 K and 1200 K, a relevant temperature in flames and thermal incinerators. Regardless of the pathway taken and temperature, all radical intermediates stemmed from the polyethylene glycol chain and primarily formed stable polydimethylsiloxanes (PDMS) and small organics such as ethylene, formaldehyde, and acetaldehyde, among other products. The major degradation products of TriSil-1n resulting from high-temperature thermal degradation as predicted by this study would be relatively less harmful to the environment compared to PFAS incineration/combustion products from previous research, supporting the replacement of PFAS with TriSil surfactants.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Acetaldeído , Dimetilpolisiloxanos , Etilenos , Fluoretos , Flúor , Fluorocarbonos/análise , Formaldeído , Polietilenoglicóis , Tensoativos/química , Temperatura , Água , Poluentes Químicos da Água/análise
9.
Environ Sci Process Impacts ; 24(11): 2085-2099, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36165287

RESUMO

Fluorochemicals are a persistent environmental contaminant that require specialized techniques for degradation and capture. In particular, recent attention on per- and poly-fluoroalkyl substances (PFAS) has led to numerous explorations of different techniques for degrading the super-strong C-F bonds found in these fluorochemicals. In this study, we investigated the hydrodefluorination mechanism using silylium-carborane salts for the degradation of PFAS at the density functional theory (DFT) level. We find that the degradation process involves both a cationic silylium (Et3Si+) and a hydridic silylium (Et3SiH) to facilitate the defluorination and hydride-addition events. Additionally, the role of carborane ([HCB11H5F6]-) is to force unoccupied anti-bonding orbitals to be partially occupied, weakening the C-F bond. We also show that changing the substituents on carborane from fluorine to other halogens weakens the C-F bond even further, with iodic carborane ([HCB11H5I6]-) having the greatest weakening effect. Moreover, our calculations reveal why the C-F bonds are resistant to degradation, and how the silylium-carborane chemistry is able to chemically transform these bonds into C-H bonds. We believe that our results are further applicable to other halocarbons, and can be used to treat either our existing stocks of these chemicals or to treat concentrated solutions following filtration and capture.


Assuntos
Boranos , Fluorocarbonos , Hexaclorobenzeno , Catálise , Flúor
10.
Environ Sci Process Impacts ; 24(12): 2249-2262, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36129094

RESUMO

Parathion, a once commonly used pesticide known for its potential toxicity, can follow several degradation mechanisms in the environment. Given the species stability and persistence, parathion can be washed into waterways from rain, and therefore an atomistic perspective of the hydrolysis of parathion, and its byproduct paraoxon, is required in order to understand its fate in the environment. Experimental studies have determined that pH plays an important role in the calculated hydrolysis rate constants of parathion degradation. In this work, the degradation of parathion into either paraoxon or 4-nitrophenol, and the degradation of paraoxon to 4-nitrophenol are explored through density functional theory using the M06-2X functional. How the level of basicity affects the reaction mechanism is explored through two different hydroxide/water environments. Our calculations support the anticipated mechanisms determined by previous experimental work that the formation of 4-nitrophenol is the predominant pathway in hydrolysis of parathion.


Assuntos
Paration , Paration/metabolismo , Paraoxon/metabolismo , Hidrólise , Teoria da Densidade Funcional
11.
Environ Sci Technol ; 56(14): 10053-10061, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35763709

RESUMO

The proliferation of poly- and perfluorinated alkyl substances (PFASs) has resulted in global concerns over contamination and bioaccumulation. PFAS compounds tend to remain in the environment indefinitely, and research is needed to elucidate the ultimate fate of these molecules. We have investigated the model humic substance and model clay surfaces as a potential environmental sink for the adsorption and retention of three representative PFAS molecules with varying chain length and head groups. Utilizing molecular dynamics simulation, we quantify the ability of pyrophyllite and the humic substance to favorably adsorb these PFAS molecules from aqueous solution. We have observed that the hydrophobic nature of the pyrophyllite surface makes the material well suited for the sorption of medium- and long-tail PFAS moieties. Similarly, we find a preference for the formation of a monolayer on the surface for long-chain PFAS molecules at high concentration. Furthermore, we discussed trends in the adsorption mechanisms for the fate and transport of these compounds, as well as potential approaches for their environmental remediation.


Assuntos
Fluorocarbonos , Solo , Adsorção , Argila , Fluorocarbonos/análise , Substâncias Húmicas/análise , Água
12.
Environ Sci Process Impacts ; 24(7): 1026-1036, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35575998

RESUMO

Malathion is a commercially available insecticide that functions by acting as an acetylcholinesterase inhibitor. Of significant concern, if left in the environment, some of the products observed from the degradation of malathion can function as more potent toxins than the parent compound. Accordingly, there are numerous studies revolving around possible degradation strategies to remove malathion from various environmental media. One of the possible approaches is the degradation of malathion by OH˙ radicals which could be produced from both artificial and biological means in the environment. While there is plenty of evidence that OH˙ does in fact degrade malathion, there is little understanding of the underlying mechanism by which OH˙ reacts with malathion. Moreover, it is not known how competitive the radical degradation pathway is with analogous alkaline degradation pathways. Even less is known about the reaction of additional OH˙ radicals with the degradation byproducts themselves. Herein, we demonstrate that OH˙ induced degradation pathways have variable competitiveness with OH- driven degradation pathways and, in some cases, produce quite different reactivity.


Assuntos
Inseticidas , Malation , Acetilcolinesterase/metabolismo , Inseticidas/metabolismo , Malation/metabolismo
13.
R Soc Open Sci ; 9(3): 211637, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35360348

RESUMO

The design of bioinspired polymers has long been an area of intense study, however, applications to the design of concrete admixtures for improved materials performance have been relatively unexplored. In this work, we functionalized poly(acrylic acid) (PAA), a simple analogue to polycarboxylate ether admixtures in concrete, with dopamine to form a catechol-bearing polymer (PAA-g-DA). Synthetic routes using hydroxybenzotriazole (HOBt) as an activating agent were examined for their ability in grafting dopamine to the PAA backbone. Previous literature using the traditional coupling reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to graft dopamine to PAA were found to be inconsistent and the sensitivity of EDC coupling reactions necessitated a search for an alternative. Additionally, HOBt allowed for greater control over per cent functionalization of the backbone, is a simple, robust reaction, and showed potential for scalability. This finding also represents a novel synthetic pathway for amide bond formation between dopamine and PAA. Finally, we performed preliminary adhesion studies of our polymer on rose granite specimens and demonstrated a 56% improvement in the mean adhesion strength over unfunctionalized PAA. These results demonstrate an early study on the potential of PAA-g-DA to be used for improving the bonds within concrete.

14.
Langmuir ; 38(1): 472-481, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34936364

RESUMO

Concrete has long been a standard in construction projects. However, increasing the binding of cement paste to the concrete aggregate (a collection of geological materials containing, e.g., gravel, sand, etc.) remains an open area of research, as this is a common failure point in concrete-based infrastructure. One solution is the application of an adhesive into the mix that not only is capable of binding under aqueous conditions but can aid in the binding of the aggregate to the cement paste. Bioinspired catecholic-type molecules have been shown to be an ultrastrong adhesive, even under wet conditions, and would, in principle, be an ideal candidate to use. In this study, we examine how dopamine (a molecule with a catechol functionality) binds to various oxides found in concrete mixtures. We find that dopamine binds preferentially to alkaline earth oxides; thus, for concrete mixtures rich in these minerals dopamine would be an ideal candidate for improved adhesion.


Assuntos
Materiais de Construção , Dopamina , Minerais , Óxidos , Termodinâmica
15.
J Phys Chem Lett ; 12(33): 8009-8015, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34433275

RESUMO

The absorption and fluorescence spectra of 14 In(III) dipyrrin-based complexes are studied using time-dependent density functional theory (TDDFT). Calculations confirm that both heteroatom substitution of oxygen (N2O2-type) by nitrogen (N4-type) in dipyrrin ligand and functionalization at the meso-position by aromatic rings with strong electron-withdrawing (EW) substituents or extended π-conjugation are efficient tools in extending the fluorescence spectra of In(III) complexes to the near-infrared (NIR) region of 750-960 nm and in red-shifting the lowest absorption band to 560-630 nm. For all complexes, the emissive singlet state has π-π* character with a small addition of intraligand charge transfer (ILCT) contributing from the meso-aryl substituents to the dipyrrin ligand. Stronger EW nitro group on the meso-phenyl or meso-aryl group with extended π-conjugation induces red-shifted electronic absorption and fluorescence. More tetrahedral geometry of the complexes with N4-type ligands leads to less intensive but more red-shifted fluorescence to NIR, compared to the corresponding complexes with N2O2-type ligands that have a more planar geometry.

16.
Environ Sci Process Impacts ; 23(8): 1231-1241, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34319331

RESUMO

Malathion is a commercially available insecticide that functions by acting as an acetylcholinesterase inhibitor. Of more significant concern, if left in the environment, some of the products observed from the degradation of malathion can function as more potent toxins than the parent compound. These compounds may threaten human life if they are present in high quantities during operation in contaminated or industrial areas. Several experimental studies have been performed to elucidate the possible degradation products of malathion under various conditions to probe both the application of potential remediation methods and the environmental fate of the degradation products. However, only limited computational studies have been reported to delineate the mechanism by which malathion degrades under environmental conditions and how these degradation mechanisms are intertwined with one another. Herein, M06-2X DFT computations were employed to develop comprehensive degradation pathways from the parent malathion compound to a multitude of experimentally observed degradation products. These data corroborate experimental observations that multiple degradation pathways (ester hydrolysis and elimination) are in competition with each other, and the end-products can therefore be influenced by environmental factors such as temperature. Furthermore, the products resulting from any of the initial degradation pathways (ester hydrolysis, elimination, or P-S hydrolysis) can continue to degrade under the same conditions into compounds that are also reported to be toxic.


Assuntos
Inseticidas , Malation , Humanos , Hidrólise , Inseticidas/análise , Cinética
17.
Mol Neurobiol ; 58(3): 1196-1211, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33106949

RESUMO

Thyroid hormone (TH) is essential for brain development, and hypothyroidism induces cognitive deficits in children and young adults. However, the participating mechanisms remain less explored. Here, we examined the molecular mechanism, hypothesizing the involvement of a deregulated autophagy and apoptosis pathway in hippocampal neurons that regulate cognitive functions. Therefore, we used a rat model of developmental hypothyroidism, generated through methimazole treatment from gestation until young adulthood. We detected that methimazole stimulated the autophagy mechanism, characterized by increased LC3B-II, Beclin-1, ATG7, and ATG5-12 conjugate and decreased p-mTOR/mTOR and p-ULK1/ULK1 autophagy regulators in the hippocampus of developing and young adult rats. This methimazole-induced hippocampal autophagy could be inhibited by thyroxine treatment. Subsequently, probing the upstream mediators of autophagy revealed an increased hippocampal neuroinflammation, marked by upregulated interleukin (IL)-1alpha and beta and activated microglial marker, Iba1, promoting neuronal IL-1 receptor-1 expression. Hence, IL-1R-antagonist (IL-1Ra), which reduced hippocampal neuronal IL-1R1, also inhibited the enhanced autophagy in hypothyroid rats. We then linked these events with hypothyroidism-induced apoptosis and loss of hippocampal neurons, where we observed that like thyroxine, IL-1Ra and autophagy inhibitor, 3-methyladenine, reduced the cleaved caspase-3 and TUNEL-stained apoptotic neurons and enhanced Nissl-stained neuronal count in methimazole-treated rats. We further related these molecular results with cognition through Y-maze and passive avoidance tests, demonstrating an IL-1Ra and 3-methyladenine-mediated improvement in learning-memory performances of the hypothyroid rats. Taken together, our study enlightens the critical role of neuroinflammation-dependent autophagy mechanism in TH-regulated hippocampal functions, disrupted in developmental hypothyroidism.


Assuntos
Apoptose , Autofagia , Disfunção Cognitiva/etiologia , Hipocampo/patologia , Hipotireoidismo/complicações , Hipotireoidismo/patologia , Interleucina-1/metabolismo , Neurônios/patologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Hipotireoidismo/sangue , Hipotireoidismo/fisiopatologia , Inflamação/patologia , Memória/efeitos dos fármacos , Metimazol/farmacologia , Microglia/efeitos dos fármacos , Microglia/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Ratos Wistar , Serina-Treonina Quinases TOR/metabolismo , Tiroxina/sangue , Tri-Iodotironina/sangue
18.
J Phys Chem A ; 124(51): 10799-10807, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33315403

RESUMO

Humic acid substances (HAs) in natural soil and sediment environments affect the retention and degradation of insensitive munition compounds and legacy high explosives (MCs): 2,4-dinitroanisole (DNAN), DNi-NH4+, N-methyl-p-nitroaniline (nMNA), 1-nitroguanidine (NQ), 3-nitro-1,2,4-triazol-5-one (NTO; neutral and anionic forms), 2,4,6-trinitrotoluene (TNT), and 1,3,5-trinitro-1,3,5-triazinane (RDX). A humic acid model compound has been considered using molecular dynamics, thermodynamic integration, and density functional theory to characterize the munition binding ability, ionization potential, and electron affinity compared to that in the water solution. Humic acids bind most compounds and act as both a sink and source for electrons. Ionization potentials suggest that HAs are more susceptible to oxidation than the MCs studied. The electron affinity of HAs is very conformation-dependent and spans the same range as the munition compounds. When HAs and MCs are complexed, the HAs tend to radicalize first, thus buffering MCs against reductive as well as oxidative attacks.

19.
J Chem Theory Comput ; 16(11): 6894-6903, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33119287

RESUMO

As we push forward on understanding the fate of chemicals in the environment, we need a method that will allow for the simulation of the inherent heterogeneity. Density functional tight binding (DFTB) is a methodology that allows for a detailed electronic description and would be ideal for this problem. While many parameters can be derived directly from DFT, empirical parameters still exist in the confinement and repulsion potentials. In this manuscript, we examine these potentials and present solutions that will minimize the degree of empiricism. Our results show that it is possible to construct confinement potentials from examining the atomic radial wavefunctions. Moreover, we found that the heterogeneous repulsion potentials can be derived from using only homogeneous repulsion curves.

20.
ISA Trans ; 107: 181-193, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32863053

RESUMO

In this paper, a quantized controller is designed for a class of uncertain nonlinear systems subjected to unknown disturbances and unknown dead-zone nonlinearity. A general class of strict feedback nonlinear systems is taken as the plant to design the controller. Here, each differential equation of the system is considered to have unknown parameters and time-varying disturbances. The maximum upper bound of the disturbances is estimated instead of estimating each disturbance. This novel idea reduces the computational cost in handling the disturbances in uncertain systems. The tuning functions are constructed to estimate the unknown system parameter and maximum upper bound of the disturbances. It is considered that the actuator dead-zone nonlinearity is bounded by an unknown parameter and incorporated to design the final quantized controller. A backstepping technique is applied to design the tuning functions and controller that stabilizes the uncertain system. The stability of the proposed controller is proved using the Lyapunov stability based theory. The obtained MATLAB simulation test results verify the designed proposed controller.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...