Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409800, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887177

RESUMO

N-Heterocyclic carbene (NHC)-stabilized metal nanoparticles (NPs) have recently attracted considerable attention. While most efforts in the field have been devoted to the development of NHC-tethered monometallic NPs and enhancing their stabilities under various conditions, their bimetallic counterparts are rare in the literature. Herein, we demonstrate that the covalent immobilization of Au and Ag atoms on polymerized NHCs is a powerful method to access bimetallic AuAg NPs. In addition, we show that while AuAg alloy NPs are often obtained via this method, the use of bimetallic polymeric substrates with lower Ag content, relative to Au, results in the formation of core-shell NPs with Au core and Ag shell. Application of these nanomaterials for oxygen reduction reaction is demonstrated with all materials exhibiting electrocatalytic activity. This work demonstrates for the first time that while bimetallic poly(NHC-metal)s are viable substrates to access NHC-stabilized bimetallic NPs, careful adjustment of metal content in the polymeric substrates can finetune the microstructure of the resulting NPs, i.e. alloy vs. core-shell.

2.
Nat Commun ; 15(1): 2745, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553437

RESUMO

Manufacturing custom three-dimensional (3D) carbon functional materials is of utmost importance for applications ranging from electronics and energy devices to medicine, and beyond. In lieu of viable eco-friendly synthesis pathways, conventional methods of carbon growth involve energy-intensive processes with inherent limitations of substrate compatibility. The yearning to produce complex structures, with ultra-high aspect ratios, further impedes the quest for eco-friendly and scalable paths toward 3D carbon-based materials patterning. Here, we demonstrate a facile process for carbon 3D printing at room temperature, using low-power visible light and a metal-free catalyst. Within seconds to minutes, this one-step photocatalytic growth yields rod-shaped microstructures with aspect ratios up to ~500 and diameters below 10 µm. The approach enables the rapid patterning of centimeter-size arrays of rods with tunable height and pitch, and of custom complex 3D structures. The patterned structures exhibit appealing luminescence properties and ohmic behavior, with great potential for optoelectronics and sensing applications, including those interfacing with biological systems.

3.
ACS Appl Mater Interfaces ; 15(37): 43756-43766, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695888

RESUMO

Galvanic exchange seeds the growth of Pt nanostructures on the Ni foam monolith. Subsequent atomic layer deposition of ultrathin Al2O3 followed by annealing under air affords supported Pt catalysts with ultralow loading (0.020 ppm). In addition to the expected enhancement of the stability of the Pt particles on the surface, the ∼2 nm Al2O3 overcoat appears to also play a crucial role in the overall structural integrity of the NiOx nanoplates that grow on the Ni foam surface as a result of the preparative route. The resulting material is physically robust toward repeated handling and showcases retention of catalytic activity over 10 standard catalyst recycling trials, standing in marked contrast to the uncoated samples. Catalyst activity was tested via the hydrogenation of various functionalized styrenes at low temperatures and low hydrogen pressure in ethanol as a solvent, with a TOF as high as 9.5 × 106 h-1 for unfunctionalized styrene. Notably, the catalysts show excellent tolerance toward F, Cl, and Br substituents and no hydrogenation of the aromatic ring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...