Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mitochondrion ; 62: 1-12, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740863

RESUMO

Mistletoes (Viscum) and close relatives are unique among flowering plants in having a drastically altered electron transport chain. Lack of complex I genes has previously been reported for the mitochondrial genome, and here we report an almost complete absence of nuclear-encoded complex I genes in the transcriptome of Viscum album. Compared to Arabidopsis with approximately 40 nuclear complex I genes, we recover only transcripts of two dual-function genes: gamma carbonic anhydrase and L-galactono-1,4-lactone dehydrogenase. The complement of genes belonging to complexes II-V of the oxidative phosphorylation pathway appears to be in accordance with other vascular plants. Additionally, transcripts encoding alternative NAD(P)H dehydrogenases and alternative oxidase were found. Despite sequence divergence, structural modeling suggests that the encoded proteins are structurally conserved. Complex I loss is a special feature in Viscum species and relatives, as all other parasitic flowering plants investigated to date seem to have a complete OXPHOS system. Hence, Viscum offers a unique system for specifically investigating molecular consequences of complex I absence, such as the role of complex I subunits involved in secondary functions.


Assuntos
Complexo I de Transporte de Elétrons/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Viscum album/metabolismo , Consumo de Oxigênio , Proteínas de Plantas , Subunidades Proteicas , Viscum album/genética
2.
J Proteomics ; 165: 51-60, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28610761

RESUMO

Protein phosphatase inhibitor-2 (PPI-2) is a conserved eukaryotic effector protein that inhibits type one protein phosphatases (TOPP). A transfer-DNA knockdown of AtPPI-2 resulted in stunted growth in both vegetative and reproductive phases of Arabidopsis development. At the cellular level, AtPPI-2 knockdown had 35 to 40% smaller cells in developing roots and leaves. This developmental phenotype was rescued by transgenic expression of the AtPPI-2 cDNA behind a constitutive promoter. Comparative proteomics of developing leaves of wild type (WT) and AtPPI-2 mutant revealed reduced levels of proteins associated with chloroplast development, ribosome biogenesis, transport, and cell cycle regulation processes. Decreased abundance of several ribosomal proteins, a DEAD box RNA helicase family protein (AtRH3), Clp protease (ClpP3) and proteins associated with cell division suggests a bottleneck in chloroplast ribosomal biogenesis and cell cycle regulation in AtPPI-2 mutant plants. In contrast, eight out of nine Arabidopsis TOPP isoforms were increased at the transcript level in AtPPI-2 leaves compared to WT. A protein-protein interaction network revealed that >75% of the differentially accumulated proteins have at least secondary and/or tertiary connections with AtPPI-2. Collectively, these data reveal a potential basis for the growth defects of AtPPI-2 and support the presumed role of AtPPI-2 as a master regulator for TOPPs, which regulate diverse growth and developmental processes. BIOLOGICAL SIGNIFICANCE: Comparative label-free proteomics was used to characterize an AtPPI-2T-DNA knockdown mutant. The complex, reduced growth phenotype supports the notion that AtPPI-2 is a global regulator of TOPPs, and possibly other proteins. Comparative proteomics revealed a range of differences in protein abundance from various cellular processes such as chloroplast development, ribosome biogenesis, and transporter activity in the AtPPI-2 mutant relative to WT Arabidopsis. Collectively the results of proteomic analysis and the protein-protein network suggest that AtPPI-2 is involved in a wide range of biological processes either directly or indirectly including plastid biogenesis, translational mechanisms, and cell cycle regulation. The proposed protein interaction network comprises a testable model underlying changes in protein abundance in the AtPPI-2 mutant, and provides a better framework for future studies.


Assuntos
Proteínas de Arabidopsis/análise , Arabidopsis/genética , Proteínas/fisiologia , Proteômica/métodos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/antagonistas & inibidores , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Fosfoproteínas Fosfatases/antagonistas & inibidores , Mapas de Interação de Proteínas , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...