Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(33): 11806-11868, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35920714

RESUMO

The current developments and progress in energy and environment-related areas pay special attention to the fabrication of advanced nanomaterials via green and sustainable paths to accomplish chemical circularity. The design and preparation methods of photocatalysts play a prime role in determining the structural, surface characteristics and optoelectronic properties of the final products. The solution combustion synthesis (SCS) technique is a relatively novel, cost-effective, and efficient method for the bulk production of nanostructured materials. SCS-fabricated metal oxides are of great technological importance in photocatalytic, environmental and energy applications. To date, the SCS route has been employed to produce a large variety of solid materials such as metals, sulfides, carbides, nitrides and single or complex metal oxides. This review intends to provide a holistic perspective of the different steps involved in the chemistry of SCS of advanced photocatalysts, and pursues several SCS metrics that influence their photocatalytic performances to establish a feasible approach to design advanced photocatalysts. The study highlights the fundamentals of SCS and the importance of various combustion parameters in the characteristics of the fabricated photocatalysts. Consequently, this work deals with the design of a concise framework to link the fine adjustment of SCS parameters for the development of efficient metal oxide photocatalysts for energy and environmental applications.

2.
Chemosphere ; 287(Pt 1): 132035, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34474383

RESUMO

Iron oxide nanostructured catalysts have emerged as potential candidates for efficient energy conversion and electrochemical energy storage devices. However, synthesis and design of nanomaterial plays a key role in its performance and efficiency. Herein, we describe a one-pot solution combustion synthesis (SCS) of α-Fe2O3 with glycine as a fuel, and a subsequent reduction step to produce iron-containing catalysts (i.e., Fe3O4, Fe-Fe3O4, and Fe0). The synthesized iron-based nanoparticles were investigated for methyl orange (MO) degradation through Microwave (MW) energy under continuous flow conditions. Fe-Fe3O4 showed higher MO degradation efficiency than α-Fe2O3, Fe3O4 and Fe0 at low absorbed MW power (i.e. 5-80 W). The enhanced degradation efficiency is associated to the combination of higher availability of electron density and higher heating effect under MW energy. Investigation of dielectric properties showed relative dielectric loss of Fe3O4, Fe-Fe3O4, and Fe0 as 3847, 2010, and 1952, respectively. The calculated average local temperature by the comparative analysis of MW treatment with conventional thermal (CT) treatment showed a marked thermal effect of MW-initiated MO degradation. This work highlights the potential of microwave-driven water depollution under continuous-flow processing conditions and demonstrates the positive impact that earth-abundant Fe catalyst synthesized by green SCS method can have over the treatment of wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Catálise , Ferro , Micro-Ondas
3.
ACS Omega ; 4(1): 2030-2039, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459454

RESUMO

Orthorhombic phase bismuth sulfide (Bi2S3) nanobelts were prepared via  liquid-solid phase reaction method. Bi2S3 nanobelts were observed to be preferentially oriented along the (101) plane. Direct band gap (2.95 eV) and characteristic wavelength (λmax = 342 nm) were extracted through UV-visible spectroscopy. Specific surface area (9.8 m2/g) and pore size (2.5-120 nm) were evaluated through Brunauer-Emmett-Teller (BET) analysis. Relative humidity (RH) sensing properties were studied in the range of 11-97% RH at ambient conditions. The response of the sensor increases linearly with increase in RH. Fast response time (8-10 s) and recovery time (15 s) were observed. Reproducible and large response was also observed between 11 and 97% RH. Small hysteresis (<5%) and long-term stability during 30 days were confirmed. As a function of frequency, capacitance, alternating current conductivity, and electrical complex modulus in the frequency range of 20-2 MHz were studied at 11-97% RH. The sensing mechanism was also studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...