Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(7): e5063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864729

RESUMO

Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein. High-confidence AlphaFold2 and RoseTTAFold predictions suggest that the intramolecular amyloidogenic region (Bri23) is part of the hydrophobic core of the proprotein, where it occupies the proposed amyloid binding site, explaining the markedly reduced ability of the proprotein to prevent an exogenous amyloidogenic peptide from aggregating. However, the BRICHOS-Bri23 complex maintains its ability to form large polydisperse oligomers that prevent amorphous protein aggregation. A cryo-EM-derived model of the Bri2 BRICHOS oligomer is compatible with surface-exposed hydrophobic motifs that get exposed and come together during oligomerization, explaining its effects against amorphous aggregation. These findings provide a molecular basis for the BRICHOS chaperone domain function, where distinct surfaces are employed against different forms of protein aggregation.


Assuntos
Chaperonas Moleculares , Domínios Proteicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Sítios de Ligação , Humanos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas
2.
Biochem J ; 477(22): 4383-4395, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33111951

RESUMO

A fragment screen of a library of 560 commercially available fragments using a kinetic assay identified a small molecule that increased the activity of the fungal glycoside hydrolase TrBgl2. An analogue by catalogue approach and detailed kinetic analysis identified improved compounds that behaved as nonessential activators with up to a 2-fold increase in maximum activation. The compounds did not activate the related bacterial glycoside hydrolase CcBglA demonstrating specificity. Interestingly, an analogue of the initial fragment inhibits both TrBgl2 and CcBglA, apparently through a mixed-model mechanism. Although it was not possible to determine crystal structures of activator binding to 55 kDa TrBgl2, solution NMR experiments demonstrated a specific binding site for the activator. A partial assignment of the NMR spectrum gave the identity of the amino acids at this site, allowing a model for TrBgl2 activation to be built. The activator binds at the entrance of the substrate-binding site, generating a productive conformation for the enzyme-substrate complex.


Assuntos
Ativadores de Enzimas/química , Proteínas Fúngicas/química , Hypocreales/química , beta-Glucosidase/química , Ressonância Magnética Nuclear Biomolecular
3.
J Biomol NMR ; 74(10-11): 521-529, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32901320

RESUMO

No matter the source of compounds, drug discovery campaigns focused directly on the target are entirely dependent on a consistent stream of reliable data that reports on how a putative ligand interacts with the protein of interest. The data will derive from many sources including enzyme assays and many types of biophysical binding assays such as TR-FRET, SPR, thermophoresis and many others. Each method has its strengths and weaknesses, but none is as information rich and broadly applicable as NMR. Here we provide a number of examples of the utility of NMR for enabling and providing ongoing support for the early pre-clinical phase of small molecule drug discovery efforts. The examples have been selected for their usefulness in a commercial setting, with full understanding of the need for speed, cost-effectiveness and ease of implementation.


Assuntos
Descoberta de Drogas/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Cristalografia/métodos , Ensaios de Triagem em Larga Escala , Ligantes , Proteínas/isolamento & purificação , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química , Soluções/química
4.
Biomol NMR Assign ; 14(2): 269, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32654087

RESUMO

In the original publication of the article, the name of one of the authors is incorrect. The author's name is Eiso AB, but was modified to A. B. Eiso. The correct name is given in this Correction.

5.
Biomol NMR Assign ; 14(2): 265-268, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562251

RESUMO

ß-glucosidases have received considerable attention due to their essential role in bioethanol production from lignocellulosic biomass. ß-glucosidase can hydrolyse cellobiose in cellulose degradation and its low activity has been considered as one of the main limiting steps in the process. Large-scale conversions of cellulose therefore require high enzyme concentration which increases the cost. ß-glucosidases with improved activity and thermostability are therefore of great commercial interest. The fungus Trichoderma reseei expresses thermostable cellulolytic enzymes which have been widely studied as attractive targets for industrial applications. Genetically modified ß-glucosidases from Trichoderma reseei have been recently commercialised. We have developed an approach in which screening of low molecular weight molecules (fragments) identifies compounds that increase enzyme activity and are currently characterizing fragment-based activators of TrBgl2. A structural analysis of the 55 kDa apo form of TrBgl2 revealed a classical (α/ß)8-TIM barrel fold. In the present study we present a partial assignment of backbone chemical shifts, along with those of the Ile (I)-Val (V)-Leu (L) methyl groups of TrBgl2. These data will be used to characterize the interaction of TrBgl2 with the small molecule activators.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Proteínas Fúngicas/análise , Hypocreales/enzimologia , Espectroscopia de Prótons por Ressonância Magnética , beta-Glucosidase/análise , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
6.
J Magn Reson ; 306: 202-212, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31358370

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for investigating cellular structures and their compositions. While in vivo and whole-cell NMR have a long tradition in cell-based approaches, high-resolution in-cell NMR spectroscopy is a new addition to these methods. In recent years, technological advancements in multiple areas provided converging benefits for cellular MR applications, especially in terms of robustness, reproducibility and physiological relevance. Here, we review the use of cellular NMR methods for drug discovery purposes in academia and industry. Specifically, we discuss how developments in NMR technologies such as miniaturized bioreactors and flow-probe perfusion systems have helped to consolidate NMR's role in cell-based drug discovery efforts.


Assuntos
Células/química , Espectroscopia de Ressonância Magnética/métodos , Preparações Farmacêuticas/química , Animais , Reatores Biológicos , Células/ultraestrutura , Indústria Farmacêutica , Humanos , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Imagem de Perfusão
7.
Int J Mol Sci ; 20(15)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357624

RESUMO

The divisome is a large protein complex that regulates bacterial cell division and therefore represents an attractive target for novel antibacterial drugs. In this study, we report on the ligandability of FtsQ, which is considered a key component of the divisome. For this, the soluble periplasmic domain of Escherichia coli FtsQ was immobilized and used to screen a library of 1501 low molecular weight (< 300 Da), synthetic compounds for those that interact with the protein. A primary screen was performed using target immobilized NMR screening (TINS) and yielded 72 hits. Subsequently, these hits were validated in an orthogonal assay. At first, we aimed to do this using surface plasmon resonance (SPR), but the lack of positive control hampered optimization of the experiment. Alternatively, a two-dimensional heteronuclear single quantum coherence (HSQC) NMR spectrum of FtsQ was obtained and used to validate these hits by chemical shift perturbation (CSP) experiments. This resulted in the identification of three fragments with weak affinity for the periplasmic domain of FtsQ, arguing that the ligandability of FtsQ is low. While this indicates that developing high affinity ligands for FtsQ is far from straightforward, the identified hit fragments can help to further interrogate FtsQ interactions.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Divisão Celular , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Relação Estrutura-Atividade
8.
Essays Biochem ; 61(5): 485-493, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118095

RESUMO

NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed.


Assuntos
Desenho de Fármacos , Drogas em Investigação/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Descoberta de Drogas/métodos , Drogas em Investigação/síntese química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/agonistas , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade
9.
J Am Chem Soc ; 139(28): 9523-9533, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28691806

RESUMO

Methyl groups are powerful probes for the analysis of structure, dynamics and function of supramolecular assemblies, using both solution- and solid-state NMR. Widespread application of the methodology has been limited due to the challenges associated with assigning spectral resonances to specific locations within a biomolecule. Here, we present Methyl Assignment by Graph Matching (MAGMA), for the automatic assignment of methyl resonances. A graph matching protocol examines all possibilities for each resonance in order to determine an exact assignment that includes a complete description of any ambiguity. MAGMA gives 100% accuracy in confident assignments when tested against both synthetic data, and 9 cross-validated examples using both solution- and solid-state NMR data. We show that this remarkable accuracy enables a user to distinguish between alternative protein structures. In a drug discovery application on HSP90, we show the method can rapidly and efficiently distinguish between possible ligand binding modes. By providing an exact and robust solution to methyl resonance assignment, MAGMA can facilitate significantly accelerated studies of supramolecular machines using methyl-based NMR spectroscopy.


Assuntos
Automação , Proteínas de Choque Térmico HSP90/química , Ressonância Magnética Nuclear Biomolecular , Algoritmos , Proteínas de Choque Térmico HSP90/genética , Humanos , Substâncias Macromoleculares/química , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida
10.
J Med Chem ; 59(4): 1648-53, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26731131

RESUMO

The P300/CBP-associated factor plays a central role in retroviral infection and cancer development, and the C-terminal bromodomain provides an opportunity for selective targeting. Here, we report several new classes of acetyl-lysine mimetic ligands ranging from mM to low micromolar affinity that were identified using fragment screening approaches. The binding modes of the most attractive fragments were determined using high resolution crystal structures providing chemical starting points and structural models for the development of potent and selective PCAF inhibitors.


Assuntos
Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo , Descoberta de Drogas , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/química
11.
Oncotarget ; 6(31): 31868-76, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26376612

RESUMO

EPHA4 belongs to the largest subfamily of receptor tyrosine kinases. In addition to its function during development, overexpression of EPHA4 in tumors has been correlated with increased proliferation, migration and poor survival. Several genome-wide transcription profiling studies have demonstrated high EPHA4 expression in Sézary syndrome (SS), a leukemic variant of cutaneous CD4+ T-cell lymphoma (CTCL) with an aggressive clinical course and poor prognosis. In this study we set out to explore the functional role of EPHA4 in SS. Both high EPHA4 mRNA and protein expression was found in circulating SS-cells of patients compared to healthy CD4+ T-cells. However, using a phosphospecific EPHA4 antibody, phosphorylation of the EPHA4 kinase domain was not detected in either circulating or skin residing SS cells. Moreover, treatment with the phosphatase inhibitor pervanadate did not result in detectable phosphorylation of the EPHA4 kinase domain, in either SS cells or in healthy CD4+ T-cells. Thus, the results from our study confirm high EPHA4 expression in SS cells both on the mRNA and protein levels, making EPHA4 a good diagnostic marker. However, the overexpressed EPHA4 does not appear to be functionally active and its overexpression might be secondary to other oncogenic drivers in SS, like STAT3 and TWIST1.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Proteínas Nucleares/metabolismo , Receptor EphA4/metabolismo , Fator de Transcrição STAT3/metabolismo , Síndrome de Sézary/metabolismo , Neoplasias Cutâneas/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Idoso , Western Blotting , Linfócitos T CD4-Positivos/patologia , Estudos de Casos e Controles , Feminino , Humanos , Técnicas Imunoenzimáticas , Masculino , Proteínas Nucleares/genética , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor EphA4/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Síndrome de Sézary/genética , Síndrome de Sézary/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas , Proteína 1 Relacionada a Twist/genética
12.
ACS Chem Biol ; 9(7): 1528-35, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24807704

RESUMO

Most libraries for fragment-based drug discovery are restricted to 1,000-10,000 compounds, but over 500,000 fragments are commercially available and potentially accessible by virtual screening. Whether this larger set would increase chemotype coverage, and whether a computational screen can pragmatically prioritize them, is debated. To investigate this question, a 1281-fragment library was screened by nuclear magnetic resonance (NMR) against AmpC ß-lactamase, and hits were confirmed by surface plasmon resonance (SPR). Nine hits with novel chemotypes were confirmed biochemically with KI values from 0.2 to low mM. We also computationally docked 290,000 purchasable fragments with chemotypes unrepresented in the empirical library, finding 10 that had KI values from 0.03 to low mM. Though less novel than those discovered by NMR, the docking-derived fragments filled chemotype holes from the empirical library. Crystal structures of nine of the fragments in complex with AmpC ß-lactamase revealed new binding sites and explained the relatively high affinity of the docking-derived fragments. The existence of chemotype holes is likely a general feature of fragment libraries, as calculation suggests that to represent the fragment substructures of even known biogenic molecules would demand a library of minimally over 32,000 fragments. Combining computational and empirical fragment screens enables the discovery of unexpected chemotypes, here by the NMR screen, while capturing chemotypes missing from the empirical library and tailored to the target, with little extra cost in resources.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas de Bactérias/metabolismo , Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular , beta-Lactamases/metabolismo
13.
J Chem Inf Model ; 53(10): 2701-14, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-23971943

RESUMO

Fragment-based lead discovery (FBLD) is becoming an increasingly important method in drug development. We have explored the potential to complement NMR-based biophysical screening of chemical libraries with molecular docking in FBLD against the A(2A) adenosine receptor (A(2A)AR), a drug target for inflammation and Parkinson's disease. Prior to an NMR-based screen of a fragment library against the A(2A)AR, molecular docking against a crystal structure was used to rank the same set of molecules by their predicted affinities. Molecular docking was able to predict four out of the five orthosteric ligands discovered by NMR among the top 5% of the ranked library, suggesting that structure-based methods could be used to prioritize among primary hits from biophysical screens. In addition, three fragments that were top-ranked by molecular docking, but had not been picked up by the NMR-based method, were demonstrated to be A(2A)AR ligands. While biophysical approaches for fragment screening are typically limited to a few thousand compounds, the docking screen was extended to include 328,000 commercially available fragments. Twenty-two top-ranked compounds were tested in radioligand binding assays, and 14 of these were A(2A)AR ligands with K(i) values ranging from 2 to 240 µM. Optimization of fragments was guided by molecular dynamics simulations and free energy calculations. The results illuminate strengths and weaknesses of molecular docking and demonstrate that this method can serve as a valuable complementary tool to biophysical screening in FBLD.


Assuntos
Agonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/química , Anti-Inflamatórios/química , Antiparkinsonianos/química , Simulação de Acoplamento Molecular , Receptor A2A de Adenosina/química , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Ligação Proteica , Ensaio Radioligante , Relação Estrutura-Atividade , Termodinâmica , Interface Usuário-Computador
14.
J Am Chem Soc ; 135(15): 5859-68, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23509882

RESUMO

Determining the three-dimensional structure of a small molecule-protein complex with weak affinity can be a significant challenge. We present a paramagnetic NMR method to determine intermolecular structure restraints based on pseudocontact shifts (PCSs). Since the ligand must be in fast exchange between free and bound states and the fraction bound can be as low as a few percent, the method is ideal for ligands with high micromolar to millimolar dissociation constants. Paramagnetic tags are attached, one at a time, in a well-defined way via two arms at several sites on the protein surface. The ligand PCSs were measured from simple 1D (1)H spectra and used as docking restraints. An independent confirmation of the complex structure was carried out using intermolecular NOEs. The results show that structures derived from these two approaches are similar. The best results are obtained if the magnetic susceptibility tensors of the tags are known, but it is demonstrated that with two-armed probes, the magnetic susceptibility tensor can be predicted with sufficient accuracy to provide a low-resolution model of the ligand orientation and the location of the binding site in the absence of isotope-labeled protein. This approach can facilitate fragment-based drug discovery in obtaining structural information on the initial fragment hits.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/metabolismo , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica
15.
J Med Chem ; 55(23): 10786-90, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23145792

RESUMO

An efficient way to rapidly generate protein-ligand costructures based on solution-NMR using sparse NOE data combined with selective isotope labeling is presented. A docked model of the 27 kDa N-terminal ATPase domain of Hsp90 bound to a small molecule ligand was generated using only 21 intermolecular NOEs, which uniquely defined both the binding site and the orientation of the ligand. The approach can prove valuable for the early stages of fragment-based drug discovery.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Ligantes
16.
ACS Chem Biol ; 7(12): 2064-73, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23013674

RESUMO

Fragment-based drug discovery (FBDD) has proven a powerful method to develop novel drugs with excellent oral bioavailability against challenging pharmaceutical targets such as protein-protein interaction targets. Very recently the underlying biophysical techniques have begun to be successfully applied to membrane proteins. Here we show that novel, ligand efficient small molecules with a variety of biological activities can be found by screening a small fragment library using thermostabilized (StaR) G protein-coupled receptors (GPCRs) and target immobilized NMR screening (TINS). Detergent-solubilized StaR adenosine A(2A) receptor was immobilized with retention of functionality, and a screen of 531 fragments was performed. Hits from the screen were thoroughly characterized for biochemical activity using the wild-type receptor. Both orthosteric and allosteric modulatory activity has been demonstrated in biochemical validation assays. Allosteric activity was confirmed in cell-based functional assays. The validated fragment hits make excellent starting points for a subsequent hit-to-lead elaboration program.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1/metabolismo , Sítio Alostérico , Animais , Biofísica , Células CHO , Cricetinae , Cricetulus , Humanos , Ligantes , Ressonância Magnética Nuclear Biomolecular
17.
Eur J Med Chem ; 47(1): 493-500, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22137457

RESUMO

The in silico identification, optimization and crystallographic characterization of a 6,7,8,9-tetrahydro-3H-pyrazolo[3,4-c]isoquinolin-1-amine scaffold as an inhibitor for the EPHA4 receptor tyrosine kinase is described. A database containing commercially available compounds was subjected to an in silico screening procedure which was focused on finding novel, EPHA4 hinge binding fragments. This resulted in the identification of 6,7,8,9-tetrahydro-3H-pyrazolo[3,4-c]isoquinolin-1-amine derivatives as EPHA4 inhibitors. Hit exploration yielded a compound with 2 µM (IC(50)) affinity for the EPHA4 receptor tyrosine kinase domain. Soaking experiments into a crystal of the EPHA4 kinase domain gave a 2.11Å X-ray structure of the EPHA4 - inhibitor complex, which confirmed the binding mode of the scaffold as proposed by the initial in silico work. The results underscore the strength of fragment based in silico screening as a tool for the discovery of novel lead compounds as small molecule kinase inhibitors.


Assuntos
Descoberta de Drogas/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptor EphA4/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Biologia Computacional , Modelos Moleculares , Conformação Proteica , Receptor EphA4/química , Receptor EphA4/metabolismo
18.
FEBS Lett ; 585(22): 3593-9, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22036717

RESUMO

The Eph family of receptor tyrosine kinases regulates diverse cellular processes while the over-expression of a member of this family, EphA4, has been reported in a variety of malignant carcinomas. To gain insight into molecular mechanisms and to facilitate structure-based inhibitor design, we solved the crystal structure of the native EphA4 kinase domain in both the apo and dasatinib bound forms. Analysis of the two structures provides insight into structural features of inhibitor binding and revealed a hydrophobic back-pocket in the ATP- binding site of EphA4 which was previously unidentified. The structures suggest a route towards development of novel and specific inhibitors.


Assuntos
Antineoplásicos/química , Pirimidinas/química , Receptor EphA4/química , Tiazóis/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Dasatinibe , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Receptor EphA4/antagonistas & inibidores
19.
DNA Repair (Amst) ; 10(9): 915-25, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21752727

RESUMO

Rev1 is a eukaryotic DNA polymerase of the Y family involved in translesion synthesis (TLS), a major damage tolerance pathway that allows DNA replication at damaged templates. Uniquely amongst the Y family polymerases, the N-terminal part of Rev1, dubbed the BRCA1 C-terminal homology (BRCT) region, includes a BRCT domain. While most BRCT domains mediate protein-protein interactions, Rev1 contains a predicted α-helix N-terminal to the BRCT domain and in human Replication Factor C (RFC) such a BRCT region endows the protein with DNA binding capacity. Here, we studied the DNA binding properties of yeast and mouse Rev1. Our results show that the BRCT region of Rev1 specifically binds to a 5' phosphorylated, recessed, primer-template junction. This DNA binding depends on the extra α-helix, N-terminal to the BRCT domain. Surprisingly, a stretch of 20 amino acids N-terminal to the predicted α-helix is also critical for high-affinity DNA binding. In addition to 5' primer-template junction binding, Rev1 efficiently binds to a recessed 3' primer-template junction. These dual DNA binding characteristics are discussed in view of the proposed recruitment of Rev1 by 5' primer-template junctions, downstream of stalled replication forks.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , DNA/genética , Vetores Genéticos/genética , Camundongos , Dados de Sequência Molecular , Nucleotidiltransferases/genética , Nucleotidiltransferases/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Alinhamento de Sequência
20.
Methods Enzymol ; 493: 115-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21371589

RESUMO

Biophysical studies with G-protein-coupled receptors (GPCRs) are typically very challenging due to the poor stability of these receptors when solubilized from the cell membrane into detergent solutions. However, the stability of a GPCR can be greatly improved by introducing a number of point mutations into the protein sequence to give a stabilized receptor or StaR®. Here, we present the utility of StaRs for biophysical studies and the screening of fragment libraries. Two case studies are used to illustrate the methods: first, the screening of a library of fragments by surface plasmon resonance against the adenosine A(2A) receptor StaR, demonstrating how very small and weakly active xanthine fragments can be detected binding to the protein on chips; second, the screening and detection of fragment hits of a larger fragment library in an NMR format called TINS (target-immobilized NMR screening) against the ß(1) adrenergic StaR.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Receptores Acoplados a Proteínas G/genética , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Ressonância Magnética Nuclear Biomolecular , Receptor A2A de Adenosina/química , Receptores Acoplados a Proteínas G/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...