Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 62(24): 5651-9, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24857316

RESUMO

Pinking is the terminology used for the salmon-red blush color that may appear in white wines produced exclusively from white grape varieties. The isolation of pinking compounds and their analysis by RP-HPLC-DAD and ESI-MS(n) showed that the origin of the pinking phenomenon in white wines from Vitis vinifera L. of Síria grape variety are the anthocyanins, mainly malvidin-3-O-glucoside. The analysis showed that the anthocyanins were located both in the pulp and in the skin. Wine pinking severity was negatively related with the increase of the average temperature of the first 10 days of October, the final period of grape maturation. The minimum amount of anthocyanins needed for the pink color visualization in wine was 0.3 mg/L. The appearance of pinking in white wines after bottling is due to the lowering of free sulfur dioxide, which leads to an increase of the relative amount of the anthocyanins red flavylium form and their polymerization, resulting in the formation of colored compounds resistant to pH changes and sulfur dioxide bleaching.


Assuntos
Vitis/química , Vinho/análise , Antocianinas/análise , Cromatografia Líquida de Alta Pressão , Cor , Frutas/química , Glucosídeos/análise , Extração em Fase Sólida
2.
J Phys Chem A ; 109(15): 3360-71, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16833671

RESUMO

The photophysical properties of several 2-substituted, 10-alkylated phenothiazines were measured in several solvents to investigate the relevance of the molecular structure in their photophysics and consequent photochemistry. Because the interaction modes of each drug and its corresponding species strongly depend on the variety of microenvironments in the cells, the properties of each one of these species must also be determined separately to understand fully the mechanism of action of the drug and the mechanism of its side effects. Information on the chemical interactions of the different species at the cellular level can be inferred from the corresponding electronic properties. In this work, we present absorption, steady-state, and time-resolved emission, laser flash photolysis, and quantum theoretical results for the ground state, the first excited singlet and triplet states, and the cation radical of promazine hydrochloride (PZ), 2-chlorpromazine hydrochloride (CPZ), 2-trifluoromethylpromazine hydrochloride (TFMPZ), 2-trifluoromethylperazine dihydrochloride (TFMP), 2-thiomethylpromazine (TMPZ), and thioridazine hydrochloride (TR). The corresponding nonalkylated phenothiazines are included as references. The photophysical properties of this drug family depend more on the solvent and the 2-substituents than on the dialkylaminopropyl chain. The largest effect was found for the triplet state of the 2-halogenated derivatives in phosphate buffer (PBS). Both the quantum yield and the lifetime of this intermediate drop to less than 5% of the corresponding value in organic solvents. The triplet state of halogenated promazines is efficiently quenched by a proton-transfer mechanism, and the rate of this quenching correlates very well with the phototoxicity of the promazine drugs. Therefore, we postulate that this species is directly related to the phototoxic side effect of neuroleptic drugs.


Assuntos
Fenotiazinas/química , Solventes/química , Alquilação , Cátions/química , Radicais Livres/química , Estrutura Molecular , Fotoquímica , Análise Espectral , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...