Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13446, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596331

RESUMO

Breast cancer is the second most common type of cancer worldwide and the leading cause of cancer death in women. Dietary bioactive compounds may act at different stages of carcinogenesis, including tumor initiation, promotion, and progression. Spices have been used for thousands of years and have many bioactive compounds with chemopreventive and chemotherapeutic properties. Curcumin has a multitude of beneficial biological properties, including anti-inflammatory and anticancer effects. This study investigated the effects of cotreatment with curcumin and the chemotherapeutic drug melphalan in cultured MDA-MB-231 breast cancer cells. When used alone, both curcumin and melphalan had a cytotoxic effect on breast cancer cells. Combined treatment with 11.65 µM of curcumin and 93.95 µM of melphalan (CURC/MEL) reduced cell viability by 28.64% and 72.43% after 24 h and 48 h, respectively. CURC/MEL reduced the number of colony-forming units and increased ROS levels by 1.36-fold. CURC/MEL alter cell cycle progression, induce apoptosis, and upregulate caspases-3, -7, and -9, in MDA-MB-231 cells. Cotreatment with curcumin and melphalan have anti-breast cancer cells effects and represent a promising candidate for clinical testing.


Assuntos
Neoplasias da Mama , Curcumina , Feminino , Humanos , Melfalan/farmacologia , Curcumina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular , Apoptose
2.
Front Immunol ; 14: 1158460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114062

RESUMO

Despite long-term sequelae of COVID-19 are emerging as a substantial public health concern, the mechanism underlying these processes still unclear. Evidence demonstrates that SARS-CoV-2 Spike protein can reach different brain regions, irrespective of viral brain replication resulting in activation of pattern recognition receptors (PRRs) and neuroinflammation. Considering that microglia dysfunction, which is regulated by a whole array of purinergic receptors, may be a central event in COVID-19 neuropathology, we investigated the impact of SARS-CoV-2 Spike protein on microglial purinergic signaling. Here, we demonstrate that cultured microglial cells (BV2 line) exposed to Spike protein induce ATP secretion and upregulation of P2Y6, P2Y12, NTPDase2 and NTPDase3 transcripts. Also, immunocytochemistry analysis shows that spike protein increases the expression of P2X7, P2Y1, P2Y6, and P2Y12 in BV2 cells. Additional, hippocampal tissue of Spike infused animals (6,5ug/site, i.c.v.) presents increased mRNA levels of P2X7, P2Y1, P2Y6, P2Y12, NTPDase1, and NTPDase2. Immunohistochemistry experiments confirmed high expression of the P2X7 receptor in microglial cells in CA3/DG hippocampal regions after spike infusion. These findings suggest that SARS-CoV-2 Spike protein modulates microglial purinergic signaling and opens new avenues for investigating the potential of purinergic receptors to mitigate COVID-19 consequences.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Microglia/metabolismo , COVID-19/metabolismo , SARS-CoV-2
3.
Molecules ; 27(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432036

RESUMO

Prion Diseases or Transmissible Spongiform Encephalopathies are neurodegenerative conditions associated with a long incubation period and progressive clinical evolution, leading to death. Their pathogenesis is characterized by conformational changes of the cellular prion protein-PrPC-in its infectious isoform-PrPSc-which can form polymeric aggregates that precipitate in brain tissues. Currently, there are no effective treatments for these diseases. The 2,5-diamino-1,4-benzoquinone structure is associated with an anti-prion profile and, considering the biodynamic properties associated with 4-quinolones, in this work, 6-amino-4-quinolones derivatives and their respective benzoquinone dimeric hybrids were synthesized and had their bioactive profile evaluated through their ability to prevent prion conversion. Two hybrids, namely, 2,5-dichloro-3,6-bis((3-carboxy-1-pentyl-4-quinolone-6-yl)amino)-1,4-benzoquinone (8e) and 2,5-dichloro-3,6-bis((1-benzyl-3-carboxy-4-quinolone-6-yl)amino)-1,4-benzoquinone (8f), stood out for their prion conversion inhibition ability, affecting the fibrillation process in both the kinetics-with a shortening of the lag phase-and thermodynamics and their ability to inhibit the formation of protein aggregates without significant cytotoxicity at ten micromolar.


Assuntos
Doenças Priônicas , Príons , Quinolonas , Humanos , Proteínas Priônicas , Príons/química , Doenças Priônicas/metabolismo , Polímeros , Translocação Genética , Benzoquinonas/farmacologia
4.
Vaccines (Basel) ; 10(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36016193

RESUMO

Despite the intramuscular route being the most used vaccination strategy against SARS-CoV-2, the intradermal route has been studied around the globe as a strong candidate for immunization against SARS-CoV-2. Adjuvants have shown to be essential vaccine components that are capable of driving robust immune responses and increasing the vaccination efficacy. In this work, our group aimed to develop a vaccination strategy for SARS-CoV-2 using a trimeric spike protein, by testing the best route with formulations containing the adjuvants AddaS03, CpG, MPL, Alum, or a combination of two of them. Our results showed that formulations that were made with AddaS03 or CpG alone or AddaS03 combined with CpG were able to induce high levels of IgG, IgG1, and IgG2a; high titers of neutralizing antibodies against SARS-CoV-2 original strain; and also induced high hypersensitivity during the challenge with Spike protein and a high level of IFN-γ producing CD4+ T-cells in mice. Altogether, those data indicate that AddaS03, CpG, or both combined may be used as adjuvants in vaccines for COVID-19.

5.
Front Immunol ; 13: 884760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844561

RESUMO

The SARS-CoV-2 pandemic has had a social and economic impact worldwide, and vaccination is an efficient strategy for diminishing those damages. New adjuvant formulations are required for the high vaccine demands, especially adjuvant formulations that induce a Th1 phenotype. Herein we assess a vaccination strategy using a combination of Alum and polyinosinic:polycytidylic acid [Poly(I:C)] adjuvants plus the SARS-CoV-2 spike protein in a prefusion trimeric conformation by an intradermal (ID) route. We found high levels of IgG anti-spike antibodies in the serum by enzyme linked immunosorbent assay (ELISA) and high neutralizing titers against SARS-CoV-2 in vitro by neutralization assay, after two or three immunizations. By evaluating the production of IgG subtypes, as expected, we found that formulations containing Poly(I:C) induced IgG2a whereas Alum did not. The combination of these two adjuvants induced high levels of both IgG1 and IgG2a. In addition, cellular immune responses of CD4+ and CD8+ T cells producing interferon-gamma were equivalent, demonstrating that the Alum + Poly(I:C) combination supported a Th1 profile. Based on the high neutralizing titers, we evaluated B cells in the germinal centers, which are specific for receptor-binding domain (RBD) and spike, and observed that more positive B cells were induced upon the Alum + Poly(I:C) combination. Moreover, these B cells produced antibodies against both RBD and non-RBD sites. We also studied the impact of this vaccination preparation [spike protein with Alum + Poly(I:C)] in the lungs of mice challenged with inactivated SARS-CoV-2 virus. We found a production of IgG, but not IgA, and a reduction in neutrophil recruitment in the bronchoalveolar lavage fluid (BALF) of mice, suggesting that our immunization scheme reduced lung inflammation. Altogether, our data suggest that Alum and Poly(I:C) together is a possible adjuvant combination for vaccines against SARS-CoV-2 by the intradermal route.


Assuntos
COVID-19 , Vacinas Virais , Adjuvantes Imunológicos , Compostos de Alúmen , Animais , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Camundongos , Poli I-C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
6.
Nutr Cancer ; 74(6): 2142-2151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34519606

RESUMO

Casein kinase 2 (CK2) plays a critical role in the proliferation and apoptosis of cancer cells. Resveratrol is a bioactive compound with anticancer and anti-inflammatory effects. This study investigated the pro-oxidant cytotoxic effects of resveratrol in association with the inhibition of CK2 activity on human breast carcinoma cells MCF-7. We showed that resveratrol and TBB, an inhibitor of CK2, decreased cell viability in a concentration dependent manner with an IC50 value of 238 µM and 106 µM after 24 h, of treatment, respectively. Resveratrol and TBB decreased CK2 activity by 1.6 and 1.4-fold, respectively, and both significantly decreased mitochondrial membrane potential. However, only resveratrol increased reactive oxygen species (ROS) levels by 1.7-fold as opposed to TBB, which did not affect ROS levels. Indeed, incubating MCF-7 cells with the antioxidant polyethylene glycol-catalase (PEG-CAT) preserved cell viability from the cytotoxic effects of resveratrol, but not from TBB toxicity. This effect seemed to be related to PEG-CAT ability to prevent CK2 inhibition induced by resveratrol incubation. In conclusion, this study demonstrated that the cytotoxic effect of resveratrol on MCF-7 cells might be associated with its pro-oxidant action, which inhibited CK2 activity, affecting cell viability and mitochondrial function.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Caseína Quinase II/metabolismo , Caseína Quinase II/farmacologia , Feminino , Humanos , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia
7.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32721999

RESUMO

Breast cancer is the leading cause of cancer mortality in women worldwide. Conventional cancer treatment is costly and results in many side effects. Dietary bioactive compounds may be a potential source for breast cancer prevention and treatment. In this scenario, the aim of this study was to investigate the effects of the bioactive compounds resveratrol, curcumin and piperine (R-C-P) on MCF-7 breast cancer cells and to associate them to Glyoxalase 1 (GLO1) activity. The findings indicate that R-C-P exhibits cytotoxicity towards MCF-7 cells. R-C-P decreased mitochondrial membrane potential (ΔΨm) by 1.93-, 2.04- and 1.17-fold, respectively. Glutathione and N-acetylcysteine were able to reverse the cytotoxicity of the assessed bioactive compounds in MCF-7 cells. R-C-P reduced GLO1 activity by 1.36-, 1.92- and 1.31-fold, respectively. R-C-P in the presence of antimycin A led to 1.98-, 1.65- and 2.16-fold decreases in D-lactate levels after 2 h of treatment, respectively. Glyoxal and methylglyoxal presented cytotoxic effects on MCF-7 cells, with IC50 values of 2.8 and 2.7 mM and of 1.5 and 1.4 mM after 24 and 48 h of treatment, respectively. In conclusion, this study demonstrated that R-C-P results in cytotoxic effects in MCF-7 cells and that this outcome is associated with decreasing GLO1 activity and mitochondrial dysfunction.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Neoplasias da Mama/enzimologia , Curcumina/farmacologia , Lactoilglutationa Liase/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Resveratrol/farmacologia , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos
8.
Sci Rep ; 10(1): 8370, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433502

RESUMO

Zika virus (ZIKV) is an arbovirus that recently emerged in the Americas as an important pathogen mainly because of its expanded pathogenesis, and elevated tropism for neuronal cells, transposition across the placental barrier, and replication in reproductive tract cells. Thus, transmission modes are eventually independent of an invertebrate vector, which is an atypical behavior for the flavivirus genus and indicates the need to study the replication of this virus in different cell types. Although ZIKV became a target for public health programs, the interaction of this flavivirus with the infected cell is still poorly understood. Herein, we analyzed the main stages of virus morphogenesis in mammalian cells, from establishment of the viroplasm-like zone to viral release from infected cells, using super-resolution fluorescence microscopy and electron microscopy. In addition, we compared this with other host cell types and other members of the Flaviviridae family that present a similar dynamic.


Assuntos
Células Epiteliais/virologia , Interações entre Hospedeiro e Microrganismos , Morfogênese , Zika virus/crescimento & desenvolvimento , Aedes , Animais , Linhagem Celular , Chlorocebus aethiops , Tomografia com Microscopia Eletrônica , Células Epiteliais/ultraestrutura , Humanos , Macaca mulatta , Microscopia de Fluorescência , Liberação de Vírus/fisiologia , Replicação Viral/fisiologia , Zika virus/patogenicidade , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
9.
PeerJ ; 4: e2670, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867765

RESUMO

BACKGROUND: Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. METHODS: Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. RESULTS: The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. DISCUSSION: Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.

10.
J Chromatogr A ; 1379: 1-8, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25576041

RESUMO

Prion diseases are characterized by protein aggregation and neurodegeneration. Conversion of the native prion protein (PrP(C)) into the abnormal scrapie PrP isoform (PrP(Sc)), which undergoes aggregation and can eventually form amyloid fibrils, is a critical step leading to the characteristic path morphological hallmark of these diseases. However, the mechanism of conversion remains unclear. It is known that ligands can act as cofactors or inhibitors in the conversion mechanism of PrP(C) into PrP(Sc). Within this context, herein, we describe the immobilization of PrP(C) onto the surface of magnetic beads and the morphological characterization of PrP(C)-coated beads by fluorescence confocal microscopy. PrP(C)-coated magnetic beads were used to identify ligands from a mixture of compounds, which were monitored by UHPLC-ESI-MS/MS. This affinity-based method allowed the isolation of the anti-prion compound quinacrine, an inhibitor of PrP aggregation. The results indicate that this approach can be applied to not only "fish" for anti-prion compounds from complex matrixes, but also to screening for and identify possible cellular cofactors involved in the deflagration of prion diseases.


Assuntos
Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Proteínas PrPSc/metabolismo , Animais , Cromatografia Líquida , Ligantes , Fenômenos Magnéticos , Microscopia de Fluorescência , Proteínas PrPSc/biossíntese , Proteínas PrPSc/química , Isoformas de Proteínas , Quinacrina/isolamento & purificação , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
11.
J Cell Biochem ; 113(8): 2586-96, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22415970

RESUMO

Melphalan (MEL) is a chemotherapeutic agent used in breast cancer therapy; however, MEL's side effects limit its clinical applications. In the last 20 years, resveratrol (RSV), a polyphenol found in grape skins, has been proposed to reduce the risk of cancer development. The aim of this study was to investigate whether RSV would be able to enhance the antitumor effects of MEL in MCF-7 and MDA-MB-231 cells. RSV potentiated the cytotoxic effects of MEL in human breast cancer cells. This finding was related to the ability of RSV to sensitize MCF-7 cells to MEL-induced apoptosis. The sensitization by RSV involved the enhancement of p53 levels, the decrease of procaspase 8 and the activation of caspases 7 and 9. Another proposed mechanism for the chemosensitization effect of MCF-7 cells to MEL by RSV was the cell cycle arrest in the S phase. The treatment with RSV or MEL increased the levels of p-Chk2. The increase became pronounced in the combined treatments of the compounds. The expression of cyclin A was decreased by treatment with RSV and by the combination of RSV with MEL. While the levels of cyclin dependent kinase 2 (CDK2) remained unchanged by treatments, its active form (Thr(160) -phosphorylated CDK2) was decreased by treatment with RSV and by the combination of RSV with MEL. The activity of CDK7, kinase that phosphorylates CDK2 at Thr(160), was inhibited by RSV and by the combination of RSV with MEL. These results indicate that RSV could be used as an adjuvant agent during breast cancer therapy with MEL.


Assuntos
Melfalan/farmacologia , Estilbenos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Imunoprecipitação , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...