Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
1.
J Cardiovasc Dev Dis ; 11(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39057616

RESUMO

Background: Coronary artery calcium (CAC) is a marker of subclinical atherosclerosis and is a complex heritable trait with both genetic and environmental risk factors, including sex and smoking. Methods: We performed genome-wide association (GWA) analyses for CAC among all participants and stratified by sex in the COPDGene study (n = 6144 participants of European ancestry and n = 2589 participants of African ancestry) with replication in the Diabetes Heart Study (DHS). We adjusted for age, sex, current smoking status, BMI, diabetes, self-reported high blood pressure, self-reported high cholesterol, and genetic ancestry (as summarized by principal components computed within each racial group). For the significant signals from the GWA analyses, we examined the single nucleotide polymorphism (SNP) by sex interactions, stratified by smoking status (current vs. former), and tested for a SNP by smoking status interaction on CAC. Results: We identified genome-wide significant associations for CAC in the chromosome 9p21 region [CDKN2B-AS1] among all COPDGene participants (p = 7.1 × 10-14) and among males (p = 1.0 × 10-9), but the signal was not genome-wide significant among females (p = 6.4 × 10-6). For the sex stratified GWA analyses among females, the chromosome 6p24 region [PHACTR1] had a genome-wide significant association (p = 4.4 × 10-8) with CAC, but this signal was not genome-wide significant among all COPDGene participants (p = 1.7 × 10-7) or males (p = 0.03). There was a significant interaction for the SNP rs9349379 in PHACTR1 with sex (p = 0.02), but the interaction was not significant for the SNP rs10757272 in CDKN2B-AS1 with sex (p = 0.21). In addition, PHACTR1 had a stronger association with CAC among current smokers (p = 6.2 × 10-7) than former smokers (p = 7.5 × 10-3) and the SNP by smoking status interaction was marginally significant (p = 0.03). CDKN2B-AS1 had a strong association with CAC among both former (p = 7.7 × 10-8) and current smokers (p = 1.7 × 10-7) and the SNP by smoking status interaction was not significant (p = 0.40). Conclusions: Among current and former smokers of European ancestry in the COPDGene study, we identified a genome-wide significant association in the chromosome 6p24 region [PHACTR1] with CAC among females, but not among males. This region had a significant SNP by sex and SNP by smoking interaction on CAC.

2.
medRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39040180

RESUMO

Rationale: Genome-wide association studies (GWAS) have identified multiple genetic loci associated with chronic obstructive pulmonary disease (COPD). When integrated with GWAS results, expression quantitative trait locus (eQTL) studies can provide insight into biological mechanisms involved in disease by identifying single nucleotide polymorphisms (SNPs) that contribute to whole gene expression. However, there are multiple genetically driven regulatory and isoform-specific effects which cannot be detected in traditional eQTL analyses. Here, we identify SNPs that are associated with alternative splicing (sQTL) in addition to eQTLs to identify novel functions for COPD associated genetic variants. Methods: We performed RNA sequencing on whole blood from 3743 subjects in the COPDGene Study. RNA sequencing data from lung tissue of 1241 subjects from the Lung Tissue Research Consortium (LTRC), and whole genome sequencing data on all subjects. Associations between all SNPs within 1000 kb of a gene (cis-) and splice and gene expression quantifications were tested using tensorQTL. In COPDGene a total of 11,869,333 SNPs were tested for association with 58,318 splice clusters, and 8,792,206 SNPs were tested for association with 70,094 splice clusters in LTRC. We assessed colocalization with COPD-associated SNPs from a published GWAS[1]. Results: After adjustment for multiple statistical testing, we identified 28,110 splice-sites corresponding to 3,889 unique genes that were significantly associated with genotype in COPDGene whole blood, and 58,258 splice-sites corresponding to 10,307 unique genes associated with genotype in LTRC lung tissue. We found 7,576 sQTL splice-sites corresponding to 2,110 sQTL genes were shared between whole blood and lung, while 20,534 sQTL splice-sites in 3,518 genes were unique to blood and 50,682 splice-sites in 9,677 genes were unique to lung. To determine what proportion of COPD-associated SNPs were associated with transcriptional splicing, we performed colocalization analysis between COPD GWAS and sQTL data, and found that 38 genomic windows, corresponding to 38 COPD GWAS loci had evidence of colocalization between QTLs and COPD. The top five colocalizations between COPD and lung sQTLs include NPNT , FBXO38 , HHIP , NTN4 and BTC . Conclusions: A total of 38 COPD GWAS loci contain evidence of sQTLs, suggesting that analysis of sQTLs in whole blood and lung tissue can provide novel insights into disease mechanisms.

3.
Nat Aging ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834882

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.

4.
Sci Data ; 11(1): 593, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844491

RESUMO

In 2023, WHO ranked chronic obstructive pulmonary disease (COPD) as the third leading cause of death, with 3.23 million fatalities in 2019. The intricate nature of the disease, which is influenced by genetics, environment, and lifestyle, is evident. The effect of air pollution and changes in atmospheric substances because of global warming highlight the need for this research. These environmental shifts are associated with the emergence of various respiratory infections such as COVID-19. RNA sequencing is pivotal in airway diseases, including COPD, as it enables comprehensive transcriptome analysis, biomarker discovery, and uncovers novel pathways. It facilitates personalized medicine by tracking dynamic changes in gene expression in response to various triggers. However, the limited research on East Asian populations may overlook the unique nuances of COPD development and progression. Bridging this gap and using peripheral blood samples for systemic analysis are crucial for comprehensive and globally applicable COPD diagnosis and treatment.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos de Coortes , COVID-19/genética , Doença Pulmonar Obstrutiva Crônica/genética , República da Coreia , Análise de Sequência de RNA
5.
RMD Open ; 10(2)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886003

RESUMO

OBJECTIVE: To compare longitudinal changes in spirometric measures between patients with rheumatoid arthritis (RA) and non-RA comparators. METHODS: We analysed longitudinal data from two prospective cohorts: the UK Biobank and COPDGene. Spirometry was conducted at baseline and a second visit after 5-7 years. RA was identified based on self-report and disease-modifying antirheumatic drug use; non-RA comparators reported neither. The primary outcomes were annual changes in the per cent-predicted forced expiratory volume in 1 s (FEV1%) and per cent predicted forced vital capacity (FVC%). Statistical comparisons were performed using multivariable linear regression. The analysis was stratified based on baseline smoking status and the presence of obstructive pattern (FEV1/FVC <0.7). RESULTS: Among participants who underwent baseline and follow-up spirometry, we identified 233 patients with RA and 37 735 non-RA comparators. Among never-smoking participants without an obstructive pattern, RA was significantly associated with more FEV1% decline (ß=-0.49, p=0.04). However, in ever smokers with ≥10 pack-years, those with RA exhibited significantly less FEV1% decline than non-RA comparators (ß=0.50, p=0.02). This difference was more pronounced among those with an obstructive pattern at baseline (ß=1.12, p=0.01). Results were similar for FEV1/FVC decline. No difference was observed in the annual FVC% change in RA versus non-RA. CONCLUSIONS: Smokers with RA, especially those with baseline obstructive spirometric patterns, experienced lower FEV1% and FEV1/FVC decline than non-RA comparators. Conversely, never smokers with RA had more FEV1% decline than non-RA comparators. Future studies should investigate potential treatments and the pathogenesis of obstructive lung diseases in smokers with RA.


Assuntos
Artrite Reumatoide , Fumar , Espirometria , Humanos , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Longitudinais , Estudos Prospectivos , Fumar/efeitos adversos , Fumar/epidemiologia , Idoso , Volume Expiratório Forçado , Capacidade Vital , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/etiologia , Adulto , Reino Unido/epidemiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38935868

RESUMO

RATIONALE: While many studies have examined gene expression in lung tissue, the gene regulatory processes underlying emphysema are still not well understood. Finding efficient non-imaging screening methods and disease-modifying therapies has been challenging, but knowledge of the transcriptomic features of emphysema may help in this effort. OBJECTIVES: Our goals were to identify emphysema-associated biological pathways through transcriptomic analysis of bulk lung tissue, to determine the lung cell types in which these emphysema-associated pathways are altered, and to detect unique and overlapping transcriptomic signatures in blood and lung samples. METHODS: Using RNA-sequencing data from 446 samples in the Lung Tissue Research Consortium (LTRC) and 3,606 blood samples from the COPDGene study, we examined the transcriptomic features of chest computed tomography-quantified emphysema. We also leveraged publicly available lung single-cell RNA-sequencing data to identify cell types showing COPD-associated differential expression of the emphysema pathways found in the bulk analyses. MEASUREMENTS AND MAIN RESULTS: In the bulk lung RNA-seq analysis, 1,087 differentially expressed genes and 34 dysregulated pathways were significantly associated with emphysema. We observed alternative splicing of several genes and increased activity in pluripotency and cell barrier function pathways. Lung tissue and blood samples shared differentially expressed genes and biological pathways. Multiple lung cell types displayed dysregulation of epithelial barrier function pathways, and distinct pathway activities were observed among various macrophage subpopulations. CONCLUSIONS: This study identified emphysema-related changes in gene expression and alternative splicing, cell-type specific dysregulated pathways, and instances of shared pathway dysregulation between blood and lung.

7.
medRxiv ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38826461

RESUMO

Rationale: Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. Objectives: Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. Methods: We defined high-risk groups based on PRS and TRS quantiles by maximizing differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. Measurements and Main Results: We examined two high-risk omics-defined groups in non-overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, n=468 ECLIPSE). We defined "High activity" (low PRS/high TRS) and "severe risk" (high PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signaling processes compared to a low-risk (low PRS, low TRS) reference subgroup. "High activity" but not "severe risk" participants had greater prospective FEV 1 decline (COPDGene: -51 mL/year; ECLIPSE: - 40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. Conclusions: Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.

8.
Hum Mol Genet ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747556

RESUMO

Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.

9.
J Am Heart Assoc ; 13(11): e033882, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38818936

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is the most important comorbidity in patients with chronic obstructive pulmonary disease (COPD). COPD exacerbations not only contribute to COPD progression but may also elevate the risk of CVD. This study aimed to determine whether COPD exacerbations increase the risk of subsequent CVD events using up to 15 years of prospective longitudinal follow-up data from the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) study. METHODS AND RESULTS: The COPDGene study is a large, multicenter, longitudinal investigation of COPD, including subjects at enrollment aged 45 to 80 years with a minimum of 10 pack-years of smoking history. Cox proportional hazards models and Kaplan-Meier survival curves were used to assess the risk of a composite end point of CVD based on the COPD exacerbation rate. Frequent exacerbators exhibited a higher cumulative incidence of composite CVD end points than infrequent exacerbators, irrespective of the presence of CVD at baseline. After adjusting for covariates, frequent exacerbators still maintained higher hazard ratios (HRs) than the infrequent exacerbator group (without CVD: HR, 1.81 [95% CI, 1.47-2.22]; with CVD: HR, 1.92 [95% CI, 1.51-2.44]). This observation remained consistently significant in moderate to severe COPD subjects and the preserved ratio impaired spirometry population. In the mild COPD population, frequent exacerbators showed a trend toward more CVD events. CONCLUSIONS: COPD exacerbations are associated with an increased risk of subsequent cardiovascular events in subjects with and without preexisting CVD. Patients with COPD experiencing frequent exacerbations may necessitate careful monitoring and additional management for subsequent potential CVD. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00608764.


Assuntos
Doenças Cardiovasculares , Progressão da Doença , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Estudos Longitudinais , Idoso de 80 Anos ou mais , Medição de Risco , Incidência , Fatores de Risco , Estudos Prospectivos , Estados Unidos/epidemiologia , Fatores de Tempo
10.
Nat Commun ; 15(1): 3800, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714703

RESUMO

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Assuntos
Aberrações Cromossômicas , Hematopoiese Clonal , Mosaicismo , Humanos , Hematopoiese Clonal/genética , Masculino , Feminino , Estudo de Associação Genômica Ampla , Janus Quinase 2/genética , Telomerase/genética , Telomerase/metabolismo , Perda de Heterozigosidade , Estudos Transversais , Mutação , Pessoa de Meia-Idade , Células-Tronco Hematopoéticas/metabolismo , Polimorfismo de Nucleotídeo Único , Idoso
11.
N Engl J Med ; 390(22): 2083-2097, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38767252

RESUMO

BACKGROUND: Adjustment for race is discouraged in lung-function testing, but the implications of adopting race-neutral equations have not been comprehensively quantified. METHODS: We obtained longitudinal data from 369,077 participants in the National Health and Nutrition Examination Survey, U.K. Biobank, the Multi-Ethnic Study of Atherosclerosis, and the Organ Procurement and Transplantation Network. Using these data, we compared the race-based 2012 Global Lung Function Initiative (GLI-2012) equations with race-neutral equations introduced in 2022 (GLI-Global). Evaluated outcomes included national projections of clinical, occupational, and financial reclassifications; individual lung-allocation scores for transplantation priority; and concordance statistics (C statistics) for clinical prediction tasks. RESULTS: Among the 249 million persons in the United States between 6 and 79 years of age who are able to produce high-quality spirometric results, the use of GLI-Global equations may reclassify ventilatory impairment for 12.5 million persons, medical impairment ratings for 8.16 million, occupational eligibility for 2.28 million, grading of chronic obstructive pulmonary disease for 2.05 million, and military disability compensation for 413,000. These potential changes differed according to race; for example, classifications of nonobstructive ventilatory impairment may change dramatically, increasing 141% (95% confidence interval [CI], 113 to 169) among Black persons and decreasing 69% (95% CI, 63 to 74) among White persons. Annual disability payments may increase by more than $1 billion among Black veterans and decrease by $0.5 billion among White veterans. GLI-2012 and GLI-Global equations had similar discriminative accuracy with regard to respiratory symptoms, health care utilization, new-onset disease, death from any cause, death related to respiratory disease, and death among persons on a transplant waiting list, with differences in C statistics ranging from -0.008 to 0.011. CONCLUSIONS: The use of race-based and race-neutral equations generated similarly accurate predictions of respiratory outcomes but assigned different disease classifications, occupational eligibility, and disability compensation for millions of persons, with effects diverging according to race. (Funded by the National Heart Lung and Blood Institute and the National Institute of Environmental Health Sciences.).


Assuntos
Testes de Função Respiratória , Insuficiência Respiratória , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Pneumopatias/diagnóstico , Pneumopatias/economia , Pneumopatias/etnologia , Pneumopatias/terapia , Transplante de Pulmão/estatística & dados numéricos , Inquéritos Nutricionais/estatística & dados numéricos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/economia , Doença Pulmonar Obstrutiva Crônica/etnologia , Doença Pulmonar Obstrutiva Crônica/terapia , Grupos Raciais , Testes de Função Respiratória/classificação , Testes de Função Respiratória/economia , Testes de Função Respiratória/normas , Espirometria , Estados Unidos/epidemiologia , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/economia , Insuficiência Respiratória/etnologia , Insuficiência Respiratória/terapia , Negro ou Afro-Americano/estatística & dados numéricos , Brancos/estatística & dados numéricos , Avaliação da Deficiência , Ajuda a Veteranos de Guerra com Deficiência/classificação , Ajuda a Veteranos de Guerra com Deficiência/economia , Ajuda a Veteranos de Guerra com Deficiência/estatística & dados numéricos , Pessoas com Deficiência/classificação , Pessoas com Deficiência/estatística & dados numéricos , Doenças Profissionais/diagnóstico , Doenças Profissionais/economia , Doenças Profissionais/etnologia , Financiamento Governamental/economia , Financiamento Governamental/estatística & dados numéricos
12.
Heliyon ; 10(10): e31301, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38807864

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous, chronic inflammatory process of the lungs and, like other complex diseases, is caused by both genetic and environmental factors. Detailed understanding of the molecular mechanisms of complex diseases requires the study of the interplay among different biomolecular layers, and thus the integration of different omics data types. In this study, we investigated COPD-associated molecular mechanisms through a correlation-based network integration of lung tissue RNA-seq and DNA methylation data of COPD cases (n = 446) and controls (n = 346) derived from the Lung Tissue Research Consortium. First, we performed a SWIM-network based analysis to build separate correlation networks for RNA-seq and DNA methylation data for our case-control study population. Then, we developed a method to integrate the results into a coupled network of differentially expressed and differentially methylated genes to investigate their relationships across both molecular layers. The functional enrichment analysis of the nodes of the coupled network revealed a strikingly significant enrichment in Immune System components, both innate and adaptive, as well as immune-system component communication (interleukin and cytokine-cytokine signaling). Our analysis allowed us to reveal novel putative COPD-associated genes and to analyze their relationships, both at the transcriptomics and epigenomics levels, thus contributing to an improved understanding of COPD pathogenesis.

13.
medRxiv ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38585732

RESUMO

RATIONALE: Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are debilitating diseases associated with divergent histopathological changes in the lungs. At present, due to cost and technical limitations, profiling cell types is not practical in large epidemiology cohorts (n>1000). Here, we used computational deconvolution to identify cell types in COPD and IPF lungs whose abundances and cell type-specific gene expression are associated with disease diagnosis and severity. METHODS: We analyzed lung tissue RNA-seq data from 1026 subjects (COPD, n=465; IPF, n=213; control, n=348) from the Lung Tissue Research Consortium. We performed RNA-seq deconvolution, querying thirty-eight discrete cell-type varieties in the lungs. We tested whether deconvoluted cell-type abundance and cell type-specific gene expression were associated with disease severity. RESULTS: The abundance score of twenty cell types significantly differed between IPF and control lungs. In IPF subjects, eleven and nine cell types were significantly associated with forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), respectively. Aberrant basaloid cells, a rare cells found in fibrotic lungs, were associated with worse FVC and DLCO in IPF subjects, indicating that this aberrant epithelial population increased with disease severity. Alveolar type 1 and vascular endothelial (VE) capillary A were decreased in COPD lungs compared to controls. An increase in macrophages and classical monocytes was associated with lower DLCO in IPF and COPD subjects. In both diseases, lower non-classical monocytes and VE capillary A cells were associated with increased disease severity. Alveolar type 2 cells and alveolar macrophages had the highest number of genes with cell type-specific differential expression by disease severity in COPD and IPF. In IPF, genes implicated in the pathogenesis of IPF, such as matrix metallopeptidase 7, growth differentiation factor 15, and eph receptor B2, were associated with disease severity in a cell type-specific manner. CONCLUSION: Utilization of RNA-seq deconvolution enabled us to pinpoint cell types present in the lungs that are associated with the severity of COPD and IPF. This knowledge offers valuable insight into the alterations within tissues in more advanced illness, ultimately providing a better understanding of the underlying pathological processes that drive disease progression.

14.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617310

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. The primary causes of COPD are environmental, including cigarette smoking; however, genetic susceptibility also contributes to COPD risk. Genome-Wide Association Studies (GWASes) have revealed more than 80 genetic loci associated with COPD, leading to the identification of multiple COPD GWAS genes. However, the biological relationships between the identified COPD susceptibility genes are largely unknown. Genes associated with a complex disease are often in close network proximity, i.e. their protein products often interact directly with each other and/or similar proteins. In this study, we use affinity purification mass spectrometry (AP-MS) to identify protein interactions with HHIP , a well-established COPD GWAS gene which is part of the sonic hedgehog pathway, in two disease-relevant lung cell lines (IMR90 and 16HBE). To better understand the network neighborhood of HHIP , its proximity to the protein products of other COPD GWAS genes, and its functional role in COPD pathogenesis, we create HUBRIS, a protein-protein interaction network compiled from 8 publicly available databases. We identified both common and cell type-specific protein-protein interactors of HHIP. We find that our newly identified interactions shorten the network distance between HHIP and the protein products of several COPD GWAS genes, including DSP, MFAP2, TET2 , and FBLN5 . These new shorter paths include proteins that are encoded by genes involved in extracellular matrix and tissue organization. We found and validated interactions to proteins that provide new insights into COPD pathobiology, including CAVIN1 (IMR90) and TP53 (16HBE). The newly discovered HHIP interactions with CAVIN1 and TP53 implicate HHIP in response to oxidative stress.

15.
Hepatology ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557779

RESUMO

BACKGROUND AND AIMS: In the classical form of α1-antitrypsin deficiency, a misfolded variant α1-antitrypsin Z accumulates in the endoplasmic reticulum of liver cells and causes liver cell injury by gain-of-function proteotoxicity in a sub-group of affected homozygotes but relatively little is known about putative modifiers. Here, we carried out genomic sequencing in a uniquely affected family with an index case of liver failure and 2 homozygous siblings with minimal or no liver disease. Their sequences were compared to sequences in well-characterized cohorts of homozygotes with or without liver disease, and then candidate sequence variants were tested for changes in the kinetics of α1-antitrypsin variant Z degradation in iPS-derived hepatocyte-like cells derived from the affected siblings themselves. APPROACH AND RESULTS: Specific variants in autophagy genes MTMR12 and FAM134A could each accelerate the degradation of α1-antitrypsin variant Z in cells from the index patient, but both MTMR12 and FAM134A variants were needed to slow the degradation of α1-antitrypsin variant Z in cells from a protected sib, indicating that inheritance of both variants is needed to mediate the pathogenic effects of hepatic proteotoxicity at the cellular level. Analysis of homozygote cohorts showed that multiple patient-specific variants in proteostasis genes are likely to explain liver disease susceptibility at the population level. CONCLUSIONS: These results validate the concept that genetic variation in autophagy function can determine susceptibility to liver disease in α1-antitrypsin deficiency and provide evidence that polygenic mechanisms and multiple patient-specific variants are likely needed for proteotoxic pathology.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38471013

RESUMO

RATIONALE: BMI is associated with COPD mortality, but the underlying mechanisms are unclear. The effect of genetic variants aggregated into a polygenic score may elucidate causal mechanisms and predict risk. OBJECTIVES: To examine the associations of genetically predicted BMI with all-cause and cause-specific mortality in COPD. METHODS: We developed a polygenic score for BMI (PGSBMI) and tested for associations of the PGSBMI with all-cause, respiratory, and cardiovascular mortality in participants with COPD from the COPDGene, ECLIPSE, and Framingham Heart studies. We calculated the difference between measured BMI and PGS-predicted BMI (BMIdiff) and categorized participants into groups of discordantly low (BMIdiff < 20th percentile), concordant (BMIdiff between 20th - 80th percentile), and discordantly high (BMIdiff > 80th percentile) BMI. We applied Cox models, examined potential non-linear associations of the PGSBMI and BMIdiff with mortality, and summarized results with meta-analysis. MEASUREMENTS AND MAIN RESULTS: We observed significant non-linear associations of measured BMI and BMIdiff, but not PGSBMI, with all-cause mortality. In meta-analyses, a one standard deviation increase in the PGSBMI was associated with an increased hazard for cardiovascular mortality (HR=1.29, 95% CI=1.12-1.49), but not with respiratory or all-cause mortality. Compared to participants with concordant measured and genetically predicted BMI, those with discordantly low BMI had higher mortality risk for all-cause (HR=1.57, CI=1.41-1.74) and respiratory death (HR=2.01, CI=1.61-2.51). CONCLUSIONS: In people with COPD, higher genetically predicted BMI is associated with higher cardiovascular mortality but not respiratory mortality. Individuals with discordantly low BMI have higher all-cause and respiratory mortality compared to those with concordant BMI.

18.
BMC Bioinformatics ; 25(1): 43, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273228

RESUMO

The computation of a similarity measure for genomic data is a standard tool in computational genetics. The principal components of such matrices are routinely used to correct for biases due to confounding by population stratification, for instance in linear regressions. However, the calculation of both a similarity matrix and its singular value decomposition (SVD) are computationally intensive. The contribution of this article is threefold. First, we demonstrate that the calculation of three matrices (called the covariance matrix, the weighted Jaccard matrix, and the genomic relationship matrix) can be reformulated in a unified way which allows for the application of a randomized SVD algorithm, which is faster than the traditional computation. The fast SVD algorithm we present is adapted from an existing randomized SVD algorithm and ensures that all computations are carried out in sparse matrix algebra. The algorithm only assumes that row-wise and column-wise subtraction and multiplication of a vector with a sparse matrix is available, an operation that is efficiently implemented in common sparse matrix packages. An exception is the so-called Jaccard matrix, which does not have a structure applicable for the fast SVD algorithm. Second, an approximate Jaccard matrix is introduced to which the fast SVD computation is applicable. Third, we establish guaranteed theoretical bounds on the accuracy (in [Formula: see text] norm and angle) between the principal components of the Jaccard matrix and the ones of our proposed approximation, thus putting the proposed Jaccard approximation on a solid mathematical foundation, and derive the theoretical runtime of our algorithm. We illustrate that the approximation error is low in practice and empirically verify the theoretical runtime scalings on both simulated data and data of the 1000 Genome Project.


Assuntos
Genoma , Genômica , Algoritmos , Modelos Lineares
19.
medRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260473

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a complex, heterogeneous disease. Traditional subtyping methods generally focus on either the clinical manifestations or the molecular endotypes of the disease, resulting in classifications that do not fully capture the disease's complexity. Here, we bridge this gap by introducing a subtyping pipeline that integrates clinical and gene expression data with variational autoencoders. We apply this methodology to the COPDGene study, a large study of current and former smoking individuals with and without COPD. Our approach generates a set of vector embeddings, called Personalized Integrated Profiles (PIPs), that recapitulate the joint clinical and molecular state of the subjects in the study. Prediction experiments show that the PIPs have a predictive accuracy comparable to or better than other embedding approaches. Using trajectory learning approaches, we analyze the main trajectories of variation in the PIP space and identify five well-separated subtypes with distinct clinical phenotypes, expression signatures, and disease outcomes. Notably, these subtypes are more robust to data resampling compared to those identified using traditional clustering approaches. Overall, our findings provide new avenues to establish fine-grained associations between the clinical characteristics, molecular processes, and disease outcomes of COPD.

20.
Radiology ; 310(1): e231632, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38165244

RESUMO

Background CT attenuation is affected by lung volume, dosage, and scanner bias, leading to inaccurate emphysema progression measurements in multicenter studies. Purpose To develop and validate a method that simultaneously corrects volume, noise, and interscanner bias for lung density change estimation in emphysema progression at CT in a longitudinal multicenter study. Materials and Methods In this secondary analysis of the prospective Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) study, lung function data were obtained from participants who completed baseline and 5-year follow-up visits from January 2008 to August 2017. CT emphysema progression was measured with volume-adjusted lung density (VALD) and compared with the joint volume-noise-bias-adjusted lung density (VNB-ALD). Reproducibility was studied under change of dosage protocol and scanner model with repeated acquisitions. Emphysema progression was visually scored in 102 randomly selected participants. A stratified analysis of clinical characteristics was performed that considered groups based on their combined lung density change measured by VALD and VNB-ALD. Results A total of 4954 COPDGene participants (mean age, 60 years ± 9 [SD]; 2511 male, 2443 female) were analyzed (1329 with repeated reduced-dose acquisition in the follow-up visit). Mean repeatability coefficients were 30 g/L ± 0.46 for VALD and 14 g/L ± 0.34 for VNB-ALD. VALD measurements showed no evidence of differences between nonprogressors and progressors (mean, -5.5 g/L ± 9.5 vs -8.6 g/L ± 9.6; P = .11), while VNB-ALD agreed with visual readings and showed a difference (mean, -0.67 g/L ± 4.8 vs -4.2 g/L ± 5.5; P < .001). Analysis of progression showed that VNB-ALD progressors had a greater decline in forced expiratory volume in 1 second (-42 mL per year vs -32 mL per year; Tukey-adjusted P = .002). Conclusion Simultaneously correcting volume, noise, and interscanner bias for lung density change estimation in emphysema progression at CT improved repeatability analyses and agreed with visual readings. It distinguished between progressors and nonprogressors and was associated with a greater decline in lung function metrics. Clinical trial registration no. NCT00608764 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Goo in this issue.


Assuntos
Enfisema , Enfisema Pulmonar , Feminino , Masculino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Enfisema Pulmonar/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...