Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biomech Eng ; 146(10)2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652602

RESUMO

Ischemic mitral regurgitation (IMR) occurs from incomplete coaptation of the mitral valve (MV) after myocardial infarction (MI), typically worsened by continued remodeling of the left ventricular (LV). The importance of LV remodeling is clear as IMR is induced by the post-MI dual mechanisms of mitral annular dilation and leaflet tethering from papillary muscle (PM) distension via the MV chordae tendineae (MVCT). However, the detailed etiology of IMR remains poorly understood, in large part due to the complex interactions of the MV and the post-MI LV remodeling processes. Given the patient-specific anatomical complexities of the IMR disease processes, simulation-based approaches represent an ideal approach to improve our understanding of this deadly disease. However, development of patient-specific models of left ventricle-mitral valve (LV-MV) interactions in IMR are complicated by the substantial variability and complexity of the MR etiology itself, making it difficult to extract underlying mechanisms from clinical data alone. To address these shortcomings, we developed a detailed ovine LV-MV finite element (FE) model based on extant comprehensive ovine experimental data. First, an extant ovine LV FE model (Sci. Rep. 2021 Jun 29;11(1):13466) was extended to incorporate the MV using a high fidelity ovine in vivo derived MV leaflet geometry. As it is not currently possible to image the MVCT in vivo, a functionally equivalent MVCT network was developed to create the final LV-MV model. Interestingly, in pilot studies, the MV leaflet strains did not agree well with known in vivo MV leaflet strain fields. We then incorporated previously reported MV leaflet prestrains (J. Biomech. Eng. 2023 Nov 1;145(11):111002) in the simulations. The resulting LV-MV model produced excellent agreement with the known in vivo ovine MV leaflet strains and deformed shapes in the normal state. We then simulated the effects of regional acute infarctions of varying sizes and anatomical locations by shutting down the local myocardial contractility. The remaining healthy (noninfarcted) myocardium mechanical behaviors were maintained, but allowed to adjust their active contractile patterns to maintain the prescribed pressure-volume loop behaviors in the acute post-MI state. For all cases studied, the LV-MV simulation demonstrated excellent agreement with known LV and MV in vivo strains and MV regurgitation orifice areas. Infarct location was shown to play a critical role in resultant MV leaflet strain fields. Specifically, extensional deformations of the posterior leaflets occurred in the posterobasal and laterobasal infarcts, while compressive deformations of the anterior leaflet were observed in the anterobasal infarct. Moreover, the simulated posterobasal infarct induced the largest MV regurgitation orifice area, consistent with experimental observations. The present study is the first detailed LV-MV simulation that reveals the important role of MV leaflet prestrain and functionally equivalent MVCT for accurate predictions of LV-MV interactions. Importantly, the current study further underscored simulation-based methods in understanding MV function as an integral part of the LV.


Assuntos
Modelos Animais de Doenças , Análise de Elementos Finitos , Ventrículos do Coração , Insuficiência da Valva Mitral , Infarto do Miocárdio , Animais , Insuficiência da Valva Mitral/fisiopatologia , Ovinos , Infarto do Miocárdio/fisiopatologia , Ventrículos do Coração/fisiopatologia , Valva Mitral/fisiopatologia , Valva Mitral/patologia , Simulação por Computador , Fenômenos Biomecânicos
2.
Cardiovasc Eng Technol ; 14(5): 677-693, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37670097

RESUMO

PURPOSE: Mitral regurgitation (MR) is a highly prevalent and deadly cardiac disease characterized by improper mitral valve (MV) leaflet coaptation. Among the plethora of available treatment strategies, the MitraClip is an especially safe option, but optimizing its long-term efficacy remains an urgent challenge. METHODS: We applied our noninvasive image-based strain computation pipeline [1] to intraoperative transesophageal echocardiography datasets taken from ten patients undergoing MitraClip repair, spanning a range of MR etiologies and MitraClip configurations. We then analyzed MV leaflet strains before and after MitraClip implementation to develop a better understanding of (1) the pre-operative state of human regurgitant MV, and (2) the MitraClip's impact on the MV leaflet deformations. RESULTS: The MV pre-operative strain fields were highly variable, underscoring both the heterogeneity of the MR in the patient population and the need for patient-specific treatment approaches. Similarly, there were no consistent overall post-operative strain patterns, although the average A2 segment radial strain difference between pre- and post-operative states was consistently positive. In contrast, the post-operative strain fields were better correlated to their respective pre-operative strain fields than to the inter-patient post-operative strain fields. This quantitative result implies that the patient specific pre-operative state of the MV guides its post-operative deformation, which suggests that the post-operative state can be predicted using pre-operative data-derived modelling alone. CONCLUSIONS: The pre-operative MV leaflet strain patterns varied considerably across the range of MR disease states and after MitraClip repair. Despite large inter-patient heterogeneity, the post-operative deformation appears principally dictated by the pre-operative deformation state. This novel finding suggests that though the variation in MR functional state and MitraClip-induced deformation were substantial, the post-operative state can be predicted from the pre-operative data alone. This study suggests that, with use of larger patient cohort and corresponding long-term outcomes, quantitative predictive factors of MitraClip durability can be identified.


Assuntos
Ecocardiografia Tridimensional , Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Mitral , Humanos , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/cirurgia , Ecocardiografia , Resultado do Tratamento , Implante de Prótese de Valva Cardíaca/efeitos adversos
3.
J Biomech Eng ; 145(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382900

RESUMO

While mitral valve (MV) repair remains the preferred clinical option for mitral regurgitation (MR) treatment, long-term outcomes remain suboptimal and difficult to predict. Furthermore, pre-operative optimization is complicated by the heterogeneity of MR presentations and the multiplicity of potential repair configurations. In the present work, we established a patient-specific MV computational pipeline based strictly on standard-of-care pre-operative imaging data to quantitatively predict the post-repair MV functional state. First, we established human mitral valve chordae tendinae (MVCT) geometric characteristics obtained from five CT-imaged excised human hearts. From these data, we developed a finite-element model of the full patient-specific MV apparatus that included MVCT papillary muscle origins obtained from both the in vitro study and the pre-operative three-dimensional echocardiography images. To functionally tune the patient-specific MV mechanical behavior, we simulated pre-operative MV closure and iteratively updated the leaflet and MVCT prestrains to minimize the mismatch between the simulated and target end-systolic geometries. Using the resultant fully calibrated MV model, we simulated undersized ring annuloplasty (URA) by defining the annular geometry directly from the ring geometry. In three human cases, the postoperative geometries were predicted to 1 mm of the target, and the MV leaflet strain fields demonstrated close agreement with noninvasive strain estimation technique targets. Interestingly, our model predicted increased posterior leaflet tethering after URA in two recurrent patients, which is the likely driver of long-term MV repair failure. In summary, the present pipeline was able to predict postoperative outcomes from pre-operative clinical data alone. This approach can thus lay the foundation for optimal tailored surgical planning for more durable repair, as well as development of mitral valve digital twins.


Assuntos
Doenças das Valvas Cardíacas , Insuficiência da Valva Mitral , Humanos , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/cirurgia , Músculos Papilares , Cordas Tendinosas
4.
JTCVS Tech ; 16: 49-59, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36510522

RESUMO

Objectives: Long-term outcomes of mitral valve repair procedures to correct ischemic mitral regurgitation remain unpredictable, due to an incomplete understanding of the disease process and the inability to reliably quantify the coaptation zone using echocardiography. Our objective was to quantify patient-specific mitral valve coaptation behavior from clinical echocardiographic images obtained before and after repair to assess coaptation restoration and its relationship with long-term repair durability. Methods: To circumvent the limitations of clinical imaging, we applied a simulation-based shape-matching technique that allowed high-fidelity reconstructions of the complete mitral valve in the systolic configuration. We then applied this method to an extant database of human regurgitant mitral valves before and after undersized ring annuloplasty to quantify the effect of the repair on mitral valve coaptation geometry. Results: Our method was able to successfully resolve the coaptation zone into distinct contacting and redundant regions. Results indicated that in patients whose regurgitation recurred 6 months postrepair, both the contacting and redundant regions were larger immediately postrepair compared with patients with no recurrence (P < .05), even when normalized to account for generally larger recurrent valves. Conclusions: Although increasing leaflet coaptation area is an intuitively obvious way to improve long-term repair durability, this study has implied that this may not be a reliable target for mitral valve repair. This study underscores the importance of a rigorous understanding of the consequences of repair techniques on mitral valve behavior, as well as a patient-specific approach to ischemic mitral regurgitation treatment within the context of mitral valve and left ventricle function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...