Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 46(11): 107, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917241

RESUMO

Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.


Assuntos
Proteínas do Capsídeo , Capsídeo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Estireno/análise , Estireno/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Vírus 40 dos Símios/química , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/metabolismo , Montagem de Vírus
2.
Biophys J ; 111(10): 2077-2085, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851933

RESUMO

Long RNA molecules are at the core of gene regulation across all kingdoms of life, while also serving as genomes in RNA viruses. Few studies have addressed the basic physical properties of long single-stranded RNAs. Long RNAs with nonrepeating sequences usually adopt highly ramified secondary structures and are better described as branched polymers. To test whether a branched polymer model can estimate the overall sizes of large RNAs, we employed fluorescence correlation spectroscopy to examine the hydrodynamic radii of a broad spectrum of biologically important RNAs, ranging from viral genomes to long noncoding regulatory RNAs. The relative sizes of long RNAs measured at low ionic strength correspond well to those predicted by two theoretical approaches that treat the effective branching associated with secondary structure formation-one employing the Kramers theorem for calculating radii of gyration, and the other featuring the metric of maximum ladder distance. Upon addition of multivalent cations, most RNAs are found to be compacted as compared with their original, low ionic-strength sizes. These results suggest that sizes of long RNA molecules are determined by the branching pattern of their secondary structures. We also experimentally validate the proposed computational approaches for estimating hydrodynamic radii of single-stranded RNAs, which use generic RNA structure prediction tools and thus can be universally applied to a wide range of long RNAs.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Sequência de Bases , Hidrodinâmica , Modelos Moleculares , RNA/genética
3.
J Phys Chem B ; 120(26): 6231-7, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27104292

RESUMO

Branched polymers can be represented as tree graphs. A one-to-one correspondence exists between a tree graph comprised of N labeled vertices and a sequence of N - 2 integers, known as the Prüfer sequence. Permutations of this sequence yield sequences corresponding to tree graphs with the same vertex-degree distribution but (generally) different branching patterns. Repeatedly shuffling the Prüfer sequence we have generated large ensembles of random tree graphs, all with the same degree distributions. We also present and apply an efficient algorithm to determine graph distances directly from their Prüfer sequences. From the (Prüfer sequence derived) graph distances, 3D size metrics, e.g., the polymer's radius of gyration, Rg, and average end-to-end distance, were then calculated using several different theoretical approaches. Applying our method to ideal randomly branched polymers of different vertex-degree distributions, all their 3D size measures are found to obey the usual N(1/4) scaling law. Among the branched polymers analyzed are RNA molecules comprised of equal proportions of the four-randomly distributed-nucleotides. Prior to Prüfer shuffling, the vertices of their representative tree graphs, these "random-sequence" RNAs exhibit an Rg ∼ N(1/3) scaling.


Assuntos
Algoritmos , Modelos Químicos , Polímeros/química
4.
J Phys Chem B ; 119(44): 13991-4002, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26435053

RESUMO

To optimize binding-and packaging-by their capsid proteins (CP), single-stranded (ss) RNA viral genomes often have local secondary/tertiary structures with high CP affinity, with these "packaging signals" serving as heterogeneous nucleation sites for the formation of capsids. Under typical in vitro self-assembly conditions, however, and in particular for the case of many ssRNA viruses whose CP have cationic N-termini, the adsorption of CP by RNA is nonspecific because the CP concentration exceeds the largest dissociation constant for CP-RNA binding. Consequently, the RNA is saturated by bound protein before lateral interactions between CP drive the homogeneous nucleation of capsids. But, before capsids are formed, the binding of protein remains reversible and introduction of another RNA species-with a different length and/or sequence-is found experimentally to result in significant redistribution of protein. Here we argue that, for a given RNA mass, the sequence with the highest affinity for protein is the one with the most compact secondary structure arising from self-complementarity; similarly, a long RNA steals protein from an equal mass of shorter ones. In both cases, it is the lateral attractions between bound proteins that determines the relative CP affinities of the RNA templates, even though the individual binding sites are identical. We demonstrate this with Monte Carlo simulations, generalizing the Rosenbluth method for excluded-volume polymers to include branching of the polymers and their reversible binding by protein.


Assuntos
Proteínas do Capsídeo/química , Vírus de RNA/química , Vírus de RNA/metabolismo , RNA Viral/química , Proteínas do Capsídeo/metabolismo , Cinética , Simulação de Dinâmica Molecular , Método de Monte Carlo , Vírus de RNA/genética , RNA Viral/metabolismo , Termodinâmica
5.
J Phys Chem B ; 118(27): 7510-7519, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24933579

RESUMO

For many viruses, the packaging of a single-stranded RNA (ss-RNA) genome is spontaneous, driven by capsid protein-capsid protein (CP) and CP-RNA interactions. Furthermore, for some multipartite ss-RNA viruses, copackaging of two or more RNA molecules is a common strategy. Here we focus on RNA copackaging in vitro by using cowpea chlorotic mottle virus (CCMV) CP and an RNA molecule that is short (500 nucleotides (nts)) compared to the lengths (≈3000 nts) packaged in wild-type virions. We show that the degree of cooperativity of virus assembly depends not only on the relative strength of the CP-CP and CP-RNA interactions but also on the RNA being short: a 500-nt RNA molecule cannot form a capsid by itself, so its packaging requires the aggregation of multiple CP-RNA complexes. By using fluorescence correlation spectroscopy (FCS), we show that at neutral pH and sufficiently low concentrations RNA and CP form complexes that are smaller than the wild-type capsid and that four 500-nt RNAs are packaged into virus-like particles (VLPs) only upon lowering the pH. Further, a variety of bulk-solution techniques confirm that fully ordered VLPs are formed only upon acidification. On the basis of these results, we argue that the observed high degree of cooperativity involves equilibrium between multiple CP/RNA complexes.

6.
Tetrahedron ; 64(29): 7008-7014, 2008 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22593605

RESUMO

Several heterocycles such as furanones, pyrrolones, and indolizines, which are of pharmacological importance, are easily accessed via the Pt(II)-catalyzed heterocyclization/1,2-migration of propargylic ketols or hydroxy imine derivatives. This method sidesteps the challenges of traditional heteroaromatic oxygenation strategies such as regioselectivity and functional group tolerance in the syntheses of these heterocycles.

7.
Org Lett ; 9(11): 2167-70, 2007 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17451249

RESUMO

Pt(II)-catalyzed cycloisomerization of aziridinyl propargylic esters affords 1,2-dihydropyridines with regiodefined installation of substituents. A mild conversion of the 1,2-dihydropyridines to the corresponding substituted pyridines as well as chirality retention from the aziridinyl propargylic ester substrates have been demonstrated.


Assuntos
Di-Hidropiridinas/síntese química , Platina/química , Catálise , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...