Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(28): 41182-41196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847949

RESUMO

Assessment of water availability in sub-humid regions is important due to distinct climatic and environmental conditions. In this study, Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) models have been assessed in simulating streamflows in the sub-humid tropical Kabini basin in Kerala, India, spanning 1260 km2. Calibration and validation utilized daily weather data from 1997 to 2015 from the Muthankera gauging station. The study investigated the impact of routing methods on runoff simulation in the ArcSWAT, exploring Muskingum and Variable Storage methods. Evaluation metrics encompassed Nash-Sutcliffe Efïciency (NSE), Coefficient of Determination (R2), Percent bias (PBIAS), RMSE-observations standard deviation ratio (RSR), and Peak Percent Threshold Statistics (PPTS) approach for high-flow values. The result indicates that HEC-HMS outperforms SWAT concerning R2 and NSE values during daily calibration and validation. Monthly simulations showed HEC-HMS closely aligning with SWAT (Variable storage), outperforming SWAT (Muskingum). The PPTS approach proved effective in simulating high-flow values. Both models exhibited proficiency in streamflow analysis within the study area, promising predictive potential for future hydrological studies in sub-humid regions.


Assuntos
Hidrologia , Índia , Modelos Teóricos , Clima Tropical , Rios , Movimentos da Água , Monitoramento Ambiental/métodos
2.
Environ Monit Assess ; 196(3): 288, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38379057

RESUMO

Seasonality and volatility of vegetation in the ecosystem are associated with climatic sensitivity, which can have severe consequences for the environment as well as on the social and economic well-being of the nation. Monitoring and forecasting vegetation growth patterns in ecosystems significantly rely on remotely sensed vegetation indices, such as Normalized Difference Vegetation Index (NDVI). A novel integration of the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and the Holt-Winters (H-W) models was used to simulate the seasonality and volatility of the three different agro-climatic zones in Jharkhand, India: the central north-eastern, eastern, and south-eastern agro-climatic zones. MODIS Terra Vegetation Indices NDVI data MOD13Q1, from 2001 to 2021, was used to create NDVI time series volatility and seasonality modeled by the GARCH and the H-W models, respectively. GARCH-based Exponential GARCH (EGARCH) [1,1] and Standard GARCH (SGARCH) [1,1] models were used to check the volatility of vegetation growth in three different agro-climatic zones of Jharkhand. The SGARCH [1,1] and EGARCH [1,1] models for the western agro-climatic zone experienced the best indicator as it has maximum likelihood and minimal Schwarz-Bayesian criterion and Akaike information criterion. The seasonality results showed that the additive H-W model showed better results in the eastern agro-climatic zone with the optimized values of MAE (16.49), MAPE (0.49), NSE (0.86), RMSE (0.49), and R2 (0.82) followed by the south-eastern and central north-eastern agro-climatic zones. By utilizing the H-W and GARCH models, the finding demonstrates that vegetation orientation and monitoring seasonality can be predicted using NDVI.


Assuntos
Ecossistema , Monitoramento Ambiental , Teorema de Bayes , Monitoramento Ambiental/métodos , Estações do Ano , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...