Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 111(6): 69, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945967

RESUMO

Tomato, Lycopersicon esculentum L. is grown widely as an important day-to-day demand vegetable. The crop is attacked by various polyphagous insect pests like tomato fruit borer, stink bug, cabbage looper, flea beetle, aphids, whitefly, two-spotted spider mite, etc., and oligophagous insects like leaf-miner, five-spotted hawkmoth, etc. To combat the damage and yield loss, various chemical insecticides were sprayed on tomatoes under field conditions. The residual pattern of insecticides like chlorantraniliprole, thiamethoxam, flubendiamide, and deltamethrin residues was studied following applications of chlorantraniliprole 18.5% SC (Coragen) @ 30 g a.i./ha, thiamethoxam 25% WG (Actara) @ 50 g a.i./ha, flubendiamide 39.35 M/M SC (Fame) @ 48 g a.i./ha and deltamethrin 2.8% EC (Decis 100) @ 12.5 g a.i./ha using Reverse Phase High-Performance Liquid Chromatography (RP-HPLC). Fruit samples were collected at 0 (1 h after application), 1, 2, 3, 5, 7 days and at harvest time. All the residues of insecticides such as chlorantraniliprole (0.09 mg kg- 1), thiamethoxam (0.03 mg kg- 1), flubendiamide (0.02 mg kg- 1), and deltamethrin (0.01 mg kg- 1) were persisted up to 5th day. There were no residues found at harvest time. The residues of chlorantraniliprole and deltamethrin persisted up to 3rd day of spraying whereas the residues of flubendiamide and thiamethoxam were not detected on the same day in the soil.


Assuntos
Inseticidas , Resíduos de Praguicidas , Solanum lycopersicum , Tiametoxam/análise , Inseticidas/análise , Solo/química , Frutas/química , Benzamidas/análise , Resíduos de Praguicidas/análise
2.
J Environ Manage ; 293: 112892, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062423

RESUMO

Energy intensive traditional cereals based monoculture often lead to high greenhouse gas emissions and degradation of land and environmental quality. Present study aimed at evaluating the energy and carbon budget of diversified groundnut (Arachis hypogea L) based cropping system with over existing traditional practice towards the development of a sustainable production technology through restoration of soil and environmental quality and enhancement of farming resiliency by stabilizing farmers' income. The trials comprised of three introduced groundnut based systems viz. groundnut- pea (Pisum sativum), groundnut-lentil (Lens esculenta) and groundnut-toria (Brasssica campestris var. Toria) replacing three existing systems viz. maize (Zea mays L) - fallow, maize - toria, and rice (Oryza sativa L)-fallow systems. Four years study revealed that adoption of groundnut based systems reduced non-renewable energy input use (fertilizers, chemical, machinery and fossil fuels) by 25.5%, consequently that reduced the cost of production. Repeated analysis of variance measurement also affirmed that groundnut based systems (groundnut-pea>groundnut-lentil> groundnut-toria) increased the energy use efficiency, energy productivity, carbon use efficiency, net returns and decreased the specific energy and energy intensiveness. Groundnut based systems increased the mean system productivity and water productivity in terms of groundnut equivalent yield by 3.7 and 3.1 folds over existing practice. The savings of fossil fuel reduced greenhouse gas emissions owing to reduced use of farm machinery and synthetic fertilizers. Groundnut based systems significantly (p < 0.05) enhanced the soil carbon concentration (8.7-18.1%) and enzymatic activities (27.1-51.8%) over existing practice. Consequently, estimated soil quality index values were 35.9-77.3% higher under groundnut based systems than existing practice. Thus, the study indicated the resilient nature of groundnut based systems as an environmentally safe and sustainable production technology for enhancing resource use efficiency, reduce carbon emission, energy intensiveness and cost of production in the Eastern Himalaya region of India and similar ecosystems.


Assuntos
Carbono , Solo , Agricultura , Carbono/análise , Produtos Agrícolas , Ecossistema , Fazendeiros , Fertilizantes , Humanos , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...