Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1373352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721333

RESUMO

Tomato leaf curl New Delhi virus (TolCNDV) causes yellow mosaic disease, which poses a significant biotic constraint for sponge gourd cultivation, potentially resulting in crop loss of up to 100%. In the present investigation, 50 diverse genotypes were screened for 3 years under natural epiphytotic conditions. A subset of 20 genotypes was further evaluated across four different environments. The combined analysis of variance revealed a significant genotype × environment interaction. Eight genotypes consistently exhibited high and stable resistance in the preliminary screening and multi-environment testing. Furthermore, genotype plus genotype × environment interaction biplot analysis identified DSG-29 (G-3), DSG-7 (G-2), DSG-6 (G-1), and DSGVRL-18 (G-6) as the desirable genotypes, which have stable resistance and better yield potential even under diseased conditions. The genotype by yield × trait biplot analysis and multi-trait genotype-ideotype distance index analysis further validated the potential of these genotypes for combining higher yield and other desirable traits with higher resistance levels. Additionally, resistant genotypes exhibited higher activities of defense-related enzymes as compared to susceptible genotypes. Thus, genotypes identified in our study will serve as a valuable genetic resource for carrying out future resistance breeding programs in sponge gourd against ToLCNDV.

2.
Environ Sci Pollut Res Int ; 31(19): 28090-28104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530520

RESUMO

The glass manufacturing industry produces hazardous effluent that is difficult to manage and causes numerous environmental problems when disposed of in the open. In this study, an attempt was made to study the phytoremediation feasibility of water lettuce (Pistia stratiotes L.), a free-floating aquatic macrophyte, for the removal of six heavy metals from glass industry effluent (GIE) at varying concentrations (0, 25, 50, 75, and 100%). After a 40-day experiment, the results showed that 25% GIE dilution showed maximum removal of heavy metals i.e., Cu (91.74%), Cr (95.29%), Fe (86.47%), Mn (92.95%), Pb (87.10%), and Zn (91.34%), respectively. The bioaccumulation, translocation, and Pearson correlation studies showed that the amount of heavy metals absorbed by vegetative parts of P. stratiotes was significantly correlated with concentrations. The highest biomass production, chlorophyll content, relative growth rate, and biomass productivity were also noted in the 25% GIE treatment. Moreover, the multiple linear regression models developed for the prediction of heavy metal uptake by P. stratiotes also showed good performance in determining the impact of GIE properties. The models showed a high coefficient of determination (R2 > 0.99), low mean average normalizing error (MANE = 0.01), and high model efficiency (ME > 0.99) supporting the robustness of the developed equations. This study outlined an efficient method for the biological treatment of GIE using P. stratiotes to reduce risks associated with its unsafe disposal.


Assuntos
Biodegradação Ambiental , Metais Pesados , Poluentes Químicos da Água , Araceae/metabolismo , Vidro , Resíduos Industriais
3.
Nutrients ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542811

RESUMO

This paper explores the multifaceted nature of ß-glucan, a notable dietary fiber (DF) with extensive applications. Beginning with an in-depth examination of its intricate polysaccharide structure, the discussion extends to diverse sources like oats, barley, mushrooms, and yeast, emphasizing their unique compositions. The absorption and metabolism of ß-glucan in the human body are scrutinized, emphasizing its potential health benefits. Extraction and purification processes for high-quality ß-glucan in food, pharmaceuticals, and cosmetics are outlined. The paper underscores ß-glucan's biofunctional roles in immune modulation, cholesterol regulation, and gastrointestinal health, supported by clinical studies. The review discusses global trade dynamics by tracing its evolution from a niche ingredient to a global commodity. In summary, it offers a comprehensive scientific perspective on ß-glucan, serving as a valuable resource for researchers, professionals, and industries exploring its potential in the dietary fiber landscape.


Assuntos
beta-Glucanas , Humanos , beta-Glucanas/química , Disponibilidade Biológica , Fibras na Dieta , Colesterol , Saccharomyces cerevisiae , Avena/química
4.
Physiol Plant ; 176(1): e14178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342492

RESUMO

The current scanty knowledge about the salt tolerance mechanism underlying the ability of plants to tolerate salt stress hinders the potential production of numerous crops, including Indian mustard. To explore the traits and mechanism for salt tolerance, high throughput phenotyping of 250 stabilized F7:8 recombinant inbred lines (RILs) mapping population of Indian mustard were conducted under control and salinity (ECiw 12 dS m-1 ) for 54 morpho-physio-seed-quality traits. Most of the traits were reduced with variable percentages under salt stress. The stress tolerance index (STI) of YPP showed a significant negative association with Na+ concentration of root (RNa), indicating that RILs with low Na+ concentration have high seed yield and a positive significant association with STI of yield-related traits, photosynthesis rate (Pn), intrinsic water use efficiency (inWUE), fresh weight of upper leaf (USFW), fresh weight of branches (BrFW), fresh weight of basal leaf (BLFW), and fresh weight of middle leaf (MLFW) revealed that by improving these traits seed yield per plant (YPP) was improved. Based on principal component analysis (PCA) of 54 STI and new index composite selection index (CSI), RILs viz., R114, R150, R164, R170, and R206 were identified as stable performers which can be exploited for quantitative trait loci (QTLs)/gene discovery and serve as potential donors to combat salt stress. Our research will serve to determine the relative importance of different functional traits of salt tolerance mechanisms that can be used to screen colossal germplasm.


Assuntos
Mostardeira , Locos de Características Quantitativas , Mostardeira/genética , Fenótipo , Genótipo , Locos de Características Quantitativas/genética , Fotossíntese/genética
5.
Front Plant Sci ; 14: 1268726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965035

RESUMO

This study aimed to develop a long-term pollen storage protocol for Luffa species (L. acutangula, L. cylindrica, L. echinata, and L. graveolens) and assess its potential for crop improvement. The optimal medium for in vitro pollen germination varied by species, with Brewbaker and Kwack (BK) medium with 10% sucrose suitable for L. acutangula, L. cylindrica, and L. echinata, and BK medium with 3% sucrose ideal for L. graveolens. Overestimation in staining tests compared to in vitro pollen germination was observed. The best results for cryopreservation were achieved with desiccation periods of 20, 30, and 40 min, maintaining moisture content between 14.04% and 18.55%. Pollen viability was negatively correlated with storage temperature (25, 4, and -20°C) and duration. Cryopreserved pollen at -196°C exhibited the highest viability over a prolonged period (2 months) and was comparable to fresh pollen in terms of germination, ovule fertilization, and fruit and seed set. This study presents a simple and reproducible pollen cryopreservation protocol applicable across Luffa species, facilitating long-term storage and its use in crop improvement efforts.

6.
Environ Sci Pollut Res Int ; 30(8): 20590-20600, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36253577

RESUMO

The present study aimed to assess the efficiency of the water hyacinth (Eichhornia crassipes (Mart.) Solms) plant for the reduction of nitrogen and phosphorus pollutants from glass industry effluent (GIE) as batch mode phytoremediation experiments. For this, response surface methodology (RSM) and artificial neural networks (ANN) methods were adopted to evidence the optimization and prediction performances of E. crassipes for total Kjeldahl's nitrogen (TKN) and total phosphorus (TP) removal. The control parameters, i.e., GIE concentration (0, 50, and 100%) and plant density (1, 3, and 5 numbers) were used to optimize the best reduction conditions of TKN and TP. A quadratic model of RSM and feed-forward backpropagation algorithm-based logistic model (input layer: 2 neurons, hidden layer: 10 neurons, and output layer: 1 neuron) of ANN showed good fitness results for experimental optimization. Optimization results showed that maximum reduction of TKN (93.86%) and TP (87.43%) was achieved by using 60% of GIE concentration and nearly five plants. However, coefficient of determination (R2) values showed that ANN models (TKN: 0.9980; TP: 0.9899) were superior in terms of prediction performance as compared to RSM (TKN: 0.9888; TP: 0.9868). Therefore, the findings of this study concluded that E. crassipes can be effectively used to remediate nitrogen and phosphorus loads of GIE and minimize environmental hazards caused by its unsafe disposal.


Assuntos
Eichhornia , Poluentes Ambientais , Poluentes Químicos da Água , Biodegradação Ambiental , Fósforo , Nitrogênio , Poluentes Químicos da Água/análise , Plantas , Redes Neurais de Computação
7.
Plants (Basel) ; 11(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501251

RESUMO

Nutritionally rich cucumber seeds remain in demand in the agricultural, health and cosmetic sectors as they are essential for a successful crop stand establishment and seed-based products. However, the production of cucumber seeds is impeded by source limitation and nutrient deficiency. The foliar application of micronutrients can supplement this deficiency and overcome the physiological setback. An experiment was undertaken to compare the impacts of the foliar application of Fe and Zn, as nanoparticles and fertilizers, on the yield and seed quality of cucumber under open and protected environments. A foliar spray of nano-ZnO (ZnNPs) and nano-Fe3O4 (FeNPs) at 100, 200 and 300 mg L-1, as well as ZnSO4 and FeSO4 as fertilizer (0.5%), was conducted at the vegetative stage and pre- and post-flowering stages. The NPs had a greater efficacy in an open field than in the protected (naturally ventilated poly house) environment. The application of both NPs increased seed yield (51.7-52.2%), total chlorophyll content (15.9-17.3%) and concentration of Zn and Fe in the fruit and the seed, by 2.0-58.5% and 5.0-30.5%, respectively. A significant increase in starch, soluble proteins, soluble sugars and oil content was observed in the seeds from the NP treated plants. NP treatment also enhanced the germination-related parameters, such as percent germination (16.8-17.0%), rate of germination (18.0-22.2%) and seedling vigor (59.8-72.6%). The biochemical characterization showed a significant improvement in the seed water uptake and the activity of hydrolytic enzymes (amylase and protease) in the germinating seed. The involvement of reactive oxygen species (superoxide anion and hydrogen peroxide) and antioxidant enzymes (Superoxide dismutase, Catalase and Peroxidase) in the germination process was indicated by an increase in their activities in the seeds from NP treated plants. Hence, the study proposes the potential benefit of the foliar application of 300 mg L-1 ZnNPs and 200 mg L-1 FeNPs at crucial stages of plant growth to improve the yield and seed quality in cucumbers.

8.
PLoS One ; 17(6): e0265325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35687611

RESUMO

Seed priming technique has a marvelous potential in enhancing seed germination and crop establishment under limited soil moisture conditions, which ultimately increases yield. Therefore, we investigated the effects of seed priming on physiology, growth, yield and antioxidant defense system of pearl millet (Pennisetum glaucum L.) under rain-fed condition. The experiments were conducted under laboratory as well as field conditions comprising three treatments i.e., non-primed seeds (control, T0), priming with tap water (hydropriming) (T1) and priming with 2% KNO3 2% for 6 hours at 25°C followed by shade drying (T2). The results showed that chlorophyll content (10.37-14.15%) and relative water content (RWC) (12.70-13.01%) increased whereas proline (-19.44 to -25%) and soluble sugar (-15.51 to -29.13%) contents decreased on account of seed priming in pearl millet under field conditions. The seed priming significantly improved the plant height, final plant stand and grain weight which resulted in increased yield. Enhanced activities of superoxide dismutase (SOD) (5.89 to 8.10 unit/g/seed/min), catalase (CAT) (22.54 to 39.67 µmol/min/g/seed) and ascorbate peroxidase (APX) (8.92 to 22.10 µmol/cm/min/g) and concomitant decrease in H2O2 and malondialdehyde (MDA) content suggests their role in imparting oxidative tolerance at initial stages of growth in primed seed. The lab studies suggest that the improved yield might be attributes to increased seed germination and seedling vigor. It is recommended that the hydropriming (tap water) or KNO3 (2%) priming of seeds for 6 hours under ambient conditions is effective to enhance growth and yield of pearl millet under rainfed conditions.


Assuntos
Pennisetum , Mecanismos de Defesa , Fazendas , Germinação , Peróxido de Hidrogênio/farmacologia , Plântula , Sementes , Água/farmacologia
9.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269980

RESUMO

Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.


Assuntos
Melhoramento Vegetal , Triticum , Aclimatação , Adaptação Fisiológica , Resposta ao Choque Térmico
10.
Front Plant Sci ; 13: 825687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310635

RESUMO

Water-soluble carbohydrates (WSCs) play a vital role in water stress avoidance and buffering wheat grain yield. However, the genetic architecture of stem WSCs' accumulation is partially understood, and few candidate genes are known. This study utilizes the compressed mixed linear model-based genome wide association study (GWAS) and heuristic post GWAS analyses to identify causative quantitative trait nucleotides (QTNs) and candidate genes for stem WSCs' content at 15 days after anthesis under different water regimes (irrigated, rainfed, and drought). Glucose, fructose, sucrose, fructans, total non-structural carbohydrates (the sum of individual sugars), total WSCs (anthrone based) quantified in the peduncle of 301 bread wheat genotypes under multiple environments (E01-E08) pertaining different water regimes, and 14,571 SNPs from "35K Axiom Wheat Breeders" Array were used for analysis. As a result, 570 significant nucleotide trait associations were identified on all chromosomes except for 4D, of which 163 were considered stable. A total of 112 quantitative trait nucleotide regions (QNRs) were identified of which 47 were presumable novel. QNRs qWSC-3B.2 and qWSC-7A.2 were identified as the hotspots. Post GWAS integration of multiple data resources prioritized 208 putative candidate genes delimited into 64 QNRs, which can be critical in understanding the genetic architecture of stem WSCs accumulation in wheat under optimum and water-stressed environments. At least 19 stable QTNs were found associated with 24 prioritized candidate genes. Clusters of fructans metabolic genes reported in the QNRs qWSC-4A.2 and qWSC-7A.2. These genes can be utilized to bring an optimum combination of various fructans metabolic genes to improve the accumulation and remobilization of stem WSCs and water stress tolerance. These results will further strengthen wheat breeding programs targeting sustainable wheat production under limited water conditions.

11.
Genomics ; 114(2): 110273, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092817

RESUMO

Cucumber fruits are perishable in nature and become unfit for market within 2-3 days of harvesting. A natural variant, DC-48 with exceptionally high shelf life was developed and used to dissect the genetic architecture and molecular mechanism for extended shelf life through RNA-seq for first time. A total of 1364 DEGs were identified and cell wall degradation, chlorophyll and ethylene metabolism related genes played key role. Polygalacturunase (PG), Expansin (EXP) and xyloglucan were down regulated determining fruit firmness and retention of fresh green colour was mainly attributed to the low expression level of the chlorophyll catalytic enzymes (CCEs). Gene regulatory networks revealed the hub genes and cross-talk associated with wide variety of the biological processes. Large number of SSRs (21524), SNPs (545173) and InDels (126252) identified will be instrumental in cucumber improvement. A web genomic resource, CsExSLDb developed will provide a platform for future investigation on cucumber post-harvest biology.


Assuntos
Cucumis sativus , Biologia , Clorofila/metabolismo , Cucumis sativus/genética , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo
12.
Asian Cardiovasc Thorac Ann ; 30(6): 711-714, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34495774

RESUMO

Among the complex and high-risk coronary intervention cases, a calcified total occlusion of coronary artery poses a great challenge. We came across a 48 years old male who had calcified total occlusion of the right coronary artery. The chronic total occlusion was crossed using Nic-Nano balloon and the calcific plaque was modified using intravascular lithotripsy as an alternative technique to rotational atherectomy which we felt as an evolving alternative approach to treat the calcified total occlusion.


Assuntos
Angioplastia Coronária com Balão , Aterectomia Coronária , Doença da Artéria Coronariana , Calcificação Vascular , Doenças Vasculares , Angioplastia Coronária com Balão/métodos , Aterectomia Coronária/métodos , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/terapia
13.
Environ Monit Assess ; 193(9): 586, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34406476

RESUMO

Sugar mill pressmud is highly considered and used as a supplement to improve soil fertility and crop yield, especially in India. This study investigated the growth and yield performance of cultivated cabbage (Brassica oleracea var. capitata) on sugar mill pressmud amended soil. Pot experiments were performed using various pressmud amendment rates (0, 50, 100, and 150 g/kg soil) to study the fertilization impact on cabbage inflorescence yield (g) and size (diameter: cm). Moreover, mineral element (Cd, Cr, Cu, Fe, Mn, and Zn) accumulation in the cabbage inflorescence was also studied using a modified polynomial non-linear model. Results showed that the sugar mill pressmud had significantly (p < 0.05) higher nutrient elements which induced their concentration in the soil after mixing. Also, the highest yield (849.25 ± 7.47 g), size (15.10 ± 1.50 cm diameter), and dry weight (42.13 g) of cabbage inflorescence were attained using 100 g/kg pressmud treatment with a maximum significant (p < 0.05) accumulation of mineral elements. However, the highest accumulation of mineral elements was observed in the outer zones (Z1 and Z2) of leafy inflorescence as compared to inner zones (Z3 and Z4), respectively. The mineral elements in both outer and inner zones of cabbage followed an order of Fe > Mn > Zn > Cu > Cr > Zn. Furthermore, the developed modified polynomial quadratic model precisely predicted the total mineral element uptake (mg dwt.) by cabbage inflorescence. The models had good fitness as described by the coefficient of determination (R2 > 0.992) values. This study suggested that sugar mill pressmud was a promising resource for cabbage cultivation, and the developed models were helpful in the precise prediction of mineral elements accumulated by its inflorescence.


Assuntos
Brassica , Metais Pesados , Poluentes do Solo , Monitoramento Ambiental , Inflorescência/química , Metais Pesados/análise , Minerais , Solo , Poluentes do Solo/análise , Açúcares
14.
J Environ Manage ; 295: 113144, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214789

RESUMO

A comparative assessment of the phytoremediation efficiency of two tolerant grass species viz. vetiver and lemongrass were performed in pots against simulated Ni-Cd battery electrolyte waste (EW) contaminated soil (EW1%, EW2% and EW4% w/w). Ni (µg g-1) accumulation was higher in shoots (36.8) and roots (252.9) of vetiver than in lemongrass (12.5 and 79.7, respectively). While the same trend was true for Cd (µg g-1) accumulation in vetiver and lemon grass roots (232.2 and 147.2, respectively), however, the accumulation in vetiver shoot (43.4) was less than in lemongrass (99.9). The bioaccumulation factor of metals in both grasses increased with EW contamination. Vetiver was tolerant towards EW toxicity than lemongrass, as it exhibited lesser decline in morphological parameters, lesser rise in TBARS against the doses of EW. The activities of SOD, APX, POD enzymes were higher in vetiver whereas, only GR in lemongrass. Multiple linear regression model show, pH had strong and positive influence over the Ni and Cd uptake by the plants whereas, phosphate, OM and bioavailable metals influenced negatively. The higher R2 (>0.9) and Chi-square values ≤ 1 in sigmoid non-linear model demonstrates robustness of the model for predicting the Ni and Cd accumulation (MHM) in both the grasses. Ni accumulation was higher than Cd, roots had greater accumulation of heavy metal and vetiver was a greater accumulator of Ni and Cd from EW the contaminated soil than lemongrass.


Assuntos
Cymbopogon , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Metais Pesados/análise , Níquel , Dinâmica não Linear , Solo , Poluentes do Solo/análise
15.
J Arrhythm ; 37(3): 701-702, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141027

RESUMO

Our interesting electrocardiogram has two qRS morphology without features of preexcitation suggesting two atrio ventricular node conduction system. All cardiologists should be aware of this feature in heterotaxy syndrome as reentrant supraventricular tachycardia may develop in these patients.

16.
World J Cardiol ; 13(4): 111-116, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33968310

RESUMO

BACKGROUND: Pulmonary artery-to-left atrial fistula is a variant of pulmonary arteriovenous fistula and is a developmental anomaly. Delayed presentation, cyanosis and effort intolerance are some of the important features. The diagnosis is confirmed by computed tomography or pulmonary artery angiography. Catheter-based closure is preferred to surgery. CASE SUMMARY: Left pulmonary artery-to-left atrial fistula is rare. A 40-year-old male presented with effort intolerance, central cyanosis, and recurrent seizures. He had a large and highly tortuous left pulmonary artery-to-left atrial fistula associated with a large aneurysmal sac in the course. Catheter-based closure was performed using a vascular plug. CONCLUSION: Left pulmonary artery-to-left atrial fistula is relatively uncommon compared to right pulmonary artery-to-left atrial fistula. Percutaneous closure by either a transeptal technique or guide wire insertion into the pulmonary vein through the pulmonary artery is preferred. The need for an arteriovenous loop depends on the tortuosity of the course of the fistula and the size of the device to be implanted because a larger device needs a larger sheath, necessitating firm guide wire support to facilitate negotiation of the stiff combination of the delivery sheath and dilator.

17.
3 Biotech ; 11(4): 164, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33786281

RESUMO

This study investigated the yield and biochemical potential of Agaricus bisporus mushroom cultivated on agricultural waste substrate supplemented with treated sugar industry effluent (SIE). Laboratory-scale experiments were performed for the cultivation of A. bisporus on a mixture of wheat straw and sugar cane bagasse moistened with different doses of borewell water (BWW) and treated SIE (0-100%). Besides this, the simultaneous effects of the SIE amendment on total Kjeldahl's nitrogen (TKN) and total phosphorus (TP) contents of substrate and kinetics of their utilization by A. bisporus were studied. Results showed a relatively higher utilization of TKN (38.10 ± 1.60%) and TP (47.4 ± 6.44%) in a 25:75 ratio of BWW and SIE, respectively. The kinetics studies of TKN and TP utilization using Lineweaver-Burk models described the maximum specific utilization rates (V max) of 0.165 and 0.125 mg·kg-1·d-1 and saturation points (K m ) of 72.401 and 33.283 mg·kg-1, respectively, which are in good agreement as indicated by R 2 values (> 0.90). In addition, the maximum significant (P < 0.01) yield (159.31 ± 8.85 g·Kg-1), biological efficiency (106.21 ± 3.84%), total phenols (3.03 ± 0.07 mg·g-1), ascorbic acid (0.44 ± 0.03 mg·g-1), and ß-carotene (3.36 ± 0.05 µg·g-1) of A. bisporus were observed using the same treatment. Therefore, this paper reported sustainable utilization of TKN and TP nutrients from SIE for A. bisporus mushroom cultivation.

18.
Water Environ Res ; 93(9): 1543-1553, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33565675

RESUMO

The present study describes the phytoremediation performance of water lettuce (Pistia stratiotes L.) for physicochemical pollutants elimination from paper mill effluent (PME). For this, pot (glass aquarium) experiments were conducted using 0% (BWW: borewell water), 25%, 50%, 75%, and 100% treatments of PME under natural day/light regime. Results of the experiments showed that the highest removal of pH (10.75%), electrical conductivity (EC: 63.82%), total dissolved solids (TDS: 71.20%) biological oxygen demand (BOD: 85.03%), chemical oxygen demand (COD: 80.46%), total Kjeldahl's nitrogen (TKN: 93.03%), phosphorus (P: 85.56%), sodium (Na: 91.89%), potassium (K: 84.04%), calcium (Ca: 84.75%), and magnesium (Mg: 83.62%), most probable number (MPN: 77.63%), and standard plate count (SPC: 74.43%) was noted in 75% treatment of PME after treatment by P. stratiotes. PCA showed the best vector length for TKN, Na, and Ca. The maximum plant growth parameters including, total fresh biomass (81.30 ± 0.28 g), chlorophyll content (3.67 ± 0.05 mg g-1  f.wt), and relative growth rate (0.0051 gg-1  d-1 ) was also measured in 75% PME treatment after phytoremediation experiments. The findings of this study make useful insight into the biological management of PME through plant-based pollutant eradication while leftover biomass may be used as a feedstock for low-cost bioenergy production. PRACTITIONER POINTS: Biological treatment of paper mill effluent using water lettuce is presented. Best reduction of physicochemical and microbiological pollutants was attained in 75% treatment. Maximum production of chlorophyll, plant biomass, and highest growth rate was also observed in 75% treatment.


Assuntos
Araceae , Poluentes Ambientais , Poluentes Químicos da Água , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Poluentes Químicos da Água/análise
19.
Environ Sci Pollut Res Int ; 28(21): 26923-26934, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33495957

RESUMO

This study explored the sustainable use of treated sugar mill wastewater (SMW) to cultivate the White button (Agaricus bisporus J.E. Lange) mushroom and the attendant risk of trace metals accumulated in the fruiting bodies. The wheat straw substrate was loaded with a normal water supply and different doses of SMW to enhance its moisture and nutrient contents. The impact of the SMW amendment on A. bisporus yield, biological efficiency, and spawn-running time was assessed. Furthermore, the substrate properties (pH, organic matter, total nitrogen, total phosphorus, etc.) based prediction models for trace metal uptake by A. bisporus fruiting bodies were developed using multiple linear regression (MLR) and artificial neural network (ANN) approaches. The results showed that maximum A. bisporus yield (158.42 ± 8.74 g/kg fresh substrate), biological efficiency (105.61 ± 3.97%), and minimum time of spawn-running (15 days) were observed in 75% SMW enrichment. For the prediction of Cd, Cu, Cr, Fe, Mn, and Zn trace metal uptake, the ANN models showed better performance in terms of R2 (> 0.995), root means square error (RMSE < 0.075), model efficiency (ME > 0.99), and model normalized bias (MNB < 0.009), as compared with those of MLR models with R2 (0.972), RMSE (< 0.441), ME (> 0.96), and MNB (< 0.034), respectively. On the other hand, the target hazard quotient (THQ) showed no significant health risk associated with the consumption of trace metal-contaminated A. bisporus in both adult and child groups. Thus, the findings of this study present a novel, safe, and sustainable method of A. bisporus cultivation along with treated agro-based wastewater management.


Assuntos
Agaricus , Águas Residuárias , Criança , Humanos , Medição de Risco , Açúcares
20.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709160

RESUMO

Globally, chickpea production is severely affected by salinity stress. Understanding the genetic basis for salinity tolerance is important to develop salinity tolerant chickpeas. A recombinant inbred line (RIL) population developed using parental lines ICCV 10 (salt-tolerant) and DCP 92-3 (salt-sensitive) was screened under field conditions to collect information on agronomy, yield components, and stress tolerance indices. Genotyping data generated using Axiom®CicerSNP array was used to construct a linkage map comprising 1856 SNP markers spanning a distance of 1106.3 cM across eight chickpea chromosomes. Extensive analysis of the phenotyping and genotyping data identified 28 quantitative trait loci (QTLs) explaining up to 28.40% of the phenotypic variance in the population. We identified QTL clusters on CaLG03 and CaLG06, each harboring major QTLs for yield and yield component traits under salinity stress. The main-effect QTLs identified in these two clusters were associated with key genes such as calcium-dependent protein kinases, histidine kinases, cation proton antiporter, and WRKY and MYB transcription factors, which are known to impart salinity stress tolerance in crop plants. Molecular markers/genes associated with these major QTLs, after validation, will be useful to undertake marker-assisted breeding for developing better varieties with salinity tolerance.


Assuntos
Cicer/genética , Genes de Plantas , Mapeamento Cromossômico , Cicer/fisiologia , Família Multigênica , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...