RESUMO
Recent terrorist assaults have demonstrated the need for the exploration and design of sustainable and stable chemical sensors with quick reaction times combined with great sensitivity. Among several classes of chemical warfare agents, nerve agents have been proven to be the most hazardous. Even short-term exposure to them can result in severe toxic effects. Human beings inadvertently face the after-effects of these chemicals even several years after these chemicals were used. Due to the extreme toxicity and difficulty in handling, dimethyl methylphosphonate (DMMP), a simulant of nerve agents with much lesser toxicity, is frequently used in laboratories as a substitute. Having a chemical structure almost identical to those of nerve agents, DMMP can mimic the properties of nerve agents. Through this paper, authors have attempted to introduce the evolution of several chemical sensors used to detect DMMP in recent years, including field-effect transistors, chemicapacitors, chemiresistors, and mass-sensitive sensors. A detailed discussion of the role of nanomaterials as chemical sensors in the detection of DMMP has been the main focus of the work through a comprehensive overview of the research on gas sensors that have been reported making use of the properties of a wide range of nanomaterials.
Assuntos
Substâncias para a Guerra Química , Nanoestruturas , Agentes Neurotóxicos , Humanos , Agentes Neurotóxicos/toxicidade , Compostos Organofosforados/toxicidade , Compostos Organofosforados/química , Substâncias para a Guerra Química/análiseRESUMO
Groundwater, a vital global resource, is essential for sustaining life and various human activities. However, its quality and availability face increasing threats from both natural and human-induced factors. Widespread contamination, arising from both natural origins and human activities such as agriculture, industry, mining, improper waste disposal, and wastewater release, poses significant risks to human health and water security. India, known for its dense population and pronounced groundwater challenges, serves as a prominent case study. Notably, in most of its regions, groundwater resources have been found to be severely contaminated by various chemical, biological, and radioactive contaminants. This review presents an examination of contamination disparities across various states of semi-arid and cold regions, encompassing diverse assessment methods. The studies conducted in semi-arid regions of North, South, West, and East India highlight the consistent presence of fluorides and nitrates majorly, as well as heavy metals in some areas, with values exceeding the permissible limits recommended by both the Bureau of Indian Standards (BIS) and the World Health Organization (WHO). These contaminants pose skeletal and dental threats, methemoglobinemia, and even cancer. Similarly, in cold regions, nitrate exposure and pesticide residues, reportedly exceeding BIS and WHO parameters, pose gastrointestinal and other waterborne health concerns. The findings also indicated that the recommended limits of several quality parameters, including pH, electrical conductivity, total dissolved solids (TDS), total hardness, and total alkalinity majorly surpassed. Emphasising the reported values of the various contaminant levels simultaneously with addressing the challenges and future perspectives, the review unravels the complex landscape of groundwater contamination and its health-related implications in semi-arid and cold regions of India.