Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
JMIR Public Health Surveill ; 10: e42050, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885497

RESUMO

BACKGROUND: The biological characteristics of mosquito vectors vary, impacting their response to control measures. Thus, having up-to-date information on vector bionomics is essential to maintain the effectiveness of existing control strategies and tools, particularly as India aims for malaria elimination by 2030. OBJECTIVE: This study aims to assess the proportions of vector species resting indoors and outdoors, determine their preference for host biting/feeding, identify transmission sites, and evaluate the susceptibility of vectors to insecticides used in public health programs. METHODS: Mosquito collections were conducted in 13 districts across 8 Indian states from 2017 to 2020 using various methods to estimate their densities. Following morphological identification in the field, sibling species of Anopheles mosquitoes were identified molecularly using polymerase chain reaction (PCR)-specific alleles. Plasmodium falciparum and Plasmodium vivax infections in the vectors were detected using enzyme-linked immunosorbent assay (ELISA) and PCR assays. In addition, we assessed the insecticide susceptibility status of primary malaria vectors following the World Health Organization (WHO) protocol. RESULTS: Anopheles culicifacies, a primary malaria vector, was collected (with a man-hour density ranging from 3.1 to 15.9) from all states of India except those in the northeastern region. Anopheles fluviatilis, another primary vector, was collected from the states of Madhya Pradesh, Maharashtra, Karnataka, and Odisha. In Haryana and Karnataka, An. culicifacies sibling species A predominated, whereas species C and E were predominant in Madhya Pradesh and Maharashtra. An. culicifacies displayed mainly endophilic behavior across all states, except in Madhya Pradesh, where the proportion of semigravid and gravid mosquitoes was nearly half of that of unfed mosquitoes. The human blood index of An. culicifacies ranged from 0.001 to 0.220 across all study sites. The sporozoite rate of An. culicifacies ranged from 0.06 to 4.24, except in Madhya Pradesh, where none of the vector mosquitoes were found to be infected with the Plasmodium parasite. In the study area, An. culicifacies exhibited resistance to DDT (dichlorodiphenyltrichloroethane; with <39% mortality). Moreover, it showed resistance to malathion (with mortality rates ranging from 49% to 78%) in all districts except Angul in Odisha and Palwal in Haryana. In addition, resistance to deltamethrin was observed in districts of Maharashtra, Gujarat, Haryana, and Karnataka. CONCLUSIONS: Our study offers vital insights into the prevalence, resting behavior, and sibling species composition of malaria vectors in India. It is evident from our findings that resistance development in An. culicifacies, the primary vector, to synthetic pyrethroids is on the rise in the country. Furthermore, the results of our study suggest a potential change in the resting behavior of An. culicifacies in Madhya Pradesh, although further studies are required to confirm this shift definitively. These findings are essential for the development of effective vector control strategies in India, aligning with the goal of malaria elimination by 2030.


Assuntos
Anopheles , Malária , Mosquitos Vetores , Índia/epidemiologia , Animais , Malária/prevenção & controle , Malária/epidemiologia , Anopheles/efeitos dos fármacos , Humanos , Erradicação de Doenças/métodos , Inseticidas , Resistência a Inseticidas , Ecologia
2.
Indian J Psychiatry ; 66(1): 1-2, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38419938
3.
PLoS Negl Trop Dis ; 17(7): e0011486, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498944

RESUMO

The present study explicitly evaluated the genetic structure of Aedes aegypti Linn, the vector of dengue, chikungunya, and Zika viruses, across different geo-climatic zones of India and also elucidated the impact of ecological and topographic factors. After data quality checks and removal of samples with excess null alleles, the final analysis was performed on 589 individual samples using 10 microsatellite markers. Overall findings of this study suggested that, Ae. aegypti populations are highly diverse with moderate genetic differentiation between them. Around half of the populations (13 out of 22) formed two genetic clusters roughly associated with geographical regions. The remaining nine populations shared genetic ancestries with either one or both of the clusters. A significant relationship between genetic and geographic distance was observed, indicating isolation by distance. However, spatial autocorrelation analysis predicted the signs of long-distance admixture. Post-hoc environmental association analysis showed that 52.7% of genetic variations were explained by a combination of climatic and topographic factors, with latitude and temperature being the best predictors. This study indicated that though overall genetic differentiation among Ae. aegypti populations across India is moderate (Fst = 0.099), the differences between the populations are developing due to the factors associated with geographic locations. This study improves the understanding of the Ae. aegypti population structure in India that may assist in predicting mosquito movements across the geo-climatic zones, enabling effective control strategies and assessing the risk of disease transmission.


Assuntos
Aedes , Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Variação Genética , Mosquitos Vetores/genética , Aedes/genética , Geografia , Temperatura , Dengue/epidemiologia
5.
medRxiv ; 2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37066213

RESUMO

Background: Tracking the emergence and spread of antimalarial drug resistance has become critical to sustaining progress towards the control and eventual elimination of malaria in South Asia, especially India. Methods: An amplicon sequencing protocol was used for high-throughput molecular surveillance of antimalarial drug resistance in a total of 158 isolates at three sites in India: Chennai, Nadiad and Rourkela. Five genes of the Plasmodium falciparum implicated in antimalarial resistance were investigated here; Pfcrt for chloroquine resistance, Pfdhfr for pyrimethamine resistance, Pfdhps for sulfadoxine resistance, Pfk13 for artemisinin resistance and Pfmdr1 for resistance to multiple antimalarials. Results: Mutations in the propeller domain of PfK13 were observed in two samples only, however these mutations are not validated for artemisinin resistance. A high proportion of parasites from the P. falciparum dominant site Rourkela showed wild-type Pfcrt and Pfdhfr haplotypes, while mutant Pfcrt and Pfdhfr haplotypes were fixed at the P. vivax dominant sites Chennai and Nadiad. The wild-type PfDHPS haplotype was predominant across all study sites. Finally, we observed the largest proportion of suspected multi-clonal infections at Rourkela, which has the highest transmission of P. falciparum among our study sites. Conclusion: This is the first simultaneous high-throughput next generation sequencing of five complete P. falciparum genes from infected patients in India.

6.
Indian J Psychiatry ; 65(Suppl 1): S5, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37102174
8.
Microbiol Spectr ; : e0250322, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847498

RESUMO

Dengue, caused by dengue virus (DENV), is the most prevalent vector-borne viral disease, posing a serious health concern to 2.5 billion people worldwide. DENV is primarily transmitted among humans by its mosquito vector Aedes aegypti; hence, the identification of a novel dengue virus receptor in mosquitoes is critical for the development of new anti-mosquito measures. In the current study, we have identified peptides which potentially interact with the surface of the virion particles and facilitate virus infection and movement during their life cycle in the mosquito vector. To identify these candidate proteins, we performed phage-display library screening against domain III of the envelope protein (EDIII), which plays an essential role during host cell receptor binding for viral entry. The mucin protein, which shared sequence similarity with the peptide identified in the screening, was cloned, expressed, and purified for in vitro interaction studies. Using in vitro pulldown and virus overlay protein-binding assay (VOPBA), we confirmed the positive interaction of mucin with purified EDIII and whole virion particles. Finally, blocking of mucin protein with anti-mucin antibodies partially reduced DENV titers in infected mosquitos. Moreover, mucin protein was found to be localized in the midgut of Ae. aegypti. IMPORTANCE Identification of interacting protein partners of DENV in the insect vector Aedes aegypti is crucial for designing vector control-based strategies and for understanding the molecular mechanism DENV uses to modulate the host, gain entry, and survive successfully. Similar proteins can be used in generating transmission-blocking vaccines.

9.
PLoS One ; 18(2): e0280289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730315

RESUMO

OBJECTIVES: To investigate the differential insecticide-susceptibility of two molecular forms of Anopheles subpictus complex (A and B) against DDT and pyrethroids, the occurrence of knockdown resistance (kdr) mutations in these forms, and the association of kdr mutations with insecticide resistance. METHODS: Insecticide susceptibility tests of An. subpictus s.l., collected from coastal and inland areas of mainland India, were performed against DDT, permethrin and deltamethrin using the WHO standard insecticide susceptibility test kit. The mosquitoes were characterized for molecular forms using a diagnostic PCR developed in this study. Representative samples of An. subpictus molecular forms A and B were sequenced for a genomic region encompassing the IIS4-5 linker to the IIS6 segments of the voltage-gated sodium channel to identify kdr mutations. A common PIRA-PCR was developed for identifying L1014F-kdr mutation and used for genotyping in both molecular forms of An. subpictus. RESULTS: Molecular form A of An. subpictus was resistant to all three insecticides, i.e., DDT, Permethrin and deltamethrin, whereas Form B was categorized as 'possibly resistant' to these insecticides. Significantly higher mortalities in WHO insecticide susceptibility tests were recorded in Form B compared to Form A in sympatric populations. Molecular characterization of the IIS4-5 linker to IIS-6 segments of the voltage-gated sodium channel revealed the presence of two alternative nucleotide transversions at L1014 residue in Form A, both leading to the same amino acid change, i.e., Leu-to-Phe; however, such mutations could not be observed in Form B. PIRA-PCR-based kdr-genotyping of field populations revealed high frequencies of L1014F-kdr mutations in Form A and the absence of this mutation in Form B. The proportion of L1014F mutation was significantly higher in resistant mosquitoes following insecticide-bioassay with DDT (p<0.0001), permethrin (p<0.001) and deltamethrin (p<0.01) as compared to their susceptible counterparts. CONCLUSIONS: Significant differences in insecticide susceptibility were found between two molecular forms of An. subpictus complex in sympatric populations. The L1014F-kdr mutation was observed in Form A only, which was found to be associated with DDT, permethrin and deltamethrin resistance.


Assuntos
Anopheles , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Inseticidas/farmacologia , Anopheles/genética , Anopheles/metabolismo , Permetrina/farmacologia , DDT/toxicidade , Piretrinas/toxicidade , Mutação , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo , Resistência a Inseticidas/genética
10.
Med Vet Entomol ; 37(2): 209-212, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35822871

RESUMO

There are at least three known knockdown resistance (kdr) mutations reported globally in the human head louse Pediculus humanus capitis De Geer (Phthiraptera: Anoplura) that are associated with reduced sensitivity to pyrethroids. However, the prevalence of kdr mutation in head lice is not known in the Indian subcontinent. To identify kdr mutations in the Indian head lice population, the genomic region of the voltage-gated sodium channel gene encompassing IIS1-2 linker to IIS6 segments was PCR-amplified and sequenced from P. humanus capitis samples collected from different geographic localities of India. DNA sequencing revealed the presence of four kdr mutations: M827I, T929I, L932F and L1014F. The presence of a classical kdr mutation L1014F, the most widely reported mutation across insect-taxa associated with the kdr-trait, is being reported for the first time in P. humanus capitis.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Piretrinas , Humanos , Animais , Pediculus/genética , Resistência a Inseticidas/genética , Infestações por Piolhos/veterinária , Mutação , Inseticidas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
11.
Emerg Infect Dis ; 29(1): 36-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573521

RESUMO

Reports of the expansion of the Asia malaria vector Anopheles stephensi mosquito into new geographic areas are increasing, which poses a threat to the elimination of urban malaria. Efficient surveillance of this vector in affected areas and early detection in new geographic areas is key to containing and controlling this species. To overcome the practical difficulties associated with the morphological identification of immature stages and adults of An. stephensi mosquitoes, we developed a species-specific PCR and a real-time PCR targeting a unique segment of the second internal transcribed spacer lacking homology to any other organism. Both PCRs can be used to identify An. stephensi mosquitoes individually or in pooled samples of mixed species, including when present in extremely low proportions (1:500). This study also reports a method for selective amplification and sequencing of partial ribosomal DNA from An. stephensi mosquitoes for their confirmation in pooled samples of mixed species.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Malária/epidemiologia , Mosquitos Vetores , Reação em Cadeia da Polimerase , DNA Ribossômico
12.
Indian J Psychiatry ; 64(5): 431-432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458077
13.
Exp Parasitol ; 243: 108407, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36349579

RESUMO

The emergence of drug-resistant parasites and/or insecticide-resistant mosquito vectors necessitates developing alternative tools that either supplement or replace the conventional malaria control strategies. Trans-infecting the mosquito vector with symbionts that can either compete with a targeted pathogen or manipulate the host biology by reducing its vectorial capacity could be a promising and innovative biological approach for the control of infectious diseases This idea could be utilized to develop a novel and efficient vector control strategy; symbionts are dispersed into vector populations to reduce their ability to transmit human pathogens. Here, we reported the natural existence of Microsporidian (an obligate fungus) in the field-collected An. stephensi mosquito. However, laboratory-reared An. stephensi and An. culicifacies did not exhibit microsporidian infection. Similarly, 16s rRNA PCR identified ∼1kb amplicons in laboratory-reared An. stephensi and An. culicifacies, indicating the presence of naturally residing different bacterial species. DNA sequencing of these amplicons revealed the identities of different bacteria which are not well-characterized in terms of plasmodia-interaction activity in the Indian malaria vector. This article summarizes an overview of the previously studied microbial symbionts for their role in Plasmodium transmission along with a list of new or unexplored symbionts in the disease transmitting mosquito vectors. The summarized information could be utilized to explore such microbial symbionts for their role in Plasmodium-transmission biology in-depth and implementation in the malaria control interventions globally.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Humanos , Mosquitos Vetores , Anopheles/parasitologia , Malária/prevenção & controle , Malária/parasitologia , RNA Ribossômico 16S/genética , Bactérias
14.
Am J Trop Med Hyg ; 107(4_Suppl): 97-106, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228919

RESUMO

The Center for the Study of Complex Malaria in India (CSCMi) is one of 10 International Centers of Excellence in Malaria Research funded by the National Institutes of Health since 2010. The Center combines innovative research with capacity building and technology transfer to undertake studies with clinical and translational impact that will move malaria control in India toward the ultimate goal of malaria elimination/eradication. A key element of each research site in the four states of India (Tamil Nadu, Gujarat, Odisha, and Meghalaya) has been undertaking community- and clinic-based epidemiology projects to characterize the burden of malaria in the region. Demographic and clinical data and samples collected during these studies have been used in downstream projects on, for example, the widespread use of mosquito repellants, the population genomics of Plasmodium vivax, and the serological responses to P. vivax and Plasmodium falciparum antigens that reflect past or present exposure. A focus has been studying the pathogenesis of severe malaria caused by P. falciparum through magnetic resonance imaging of cerebral malaria patients. Here we provide a snapshot of some of the basic and applied research the CSCMi has undertaken over the past 12 years and indicate the further research and/or clinical and translational impact these studies have had.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Animais , Humanos , Índia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Vivax/epidemiologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Pesquisa Translacional Biomédica
15.
Sci Rep ; 12(1): 17872, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284104

RESUMO

The glutathione S-transferases (GST) genes are a multigene family of enzymes involved in the metabolism of endogenous and xenobiotic compounds by catalysing the conjugation of the reduced form of glutathione to the substrate. The epsilon class of GST (GSTe), unique to arthropods, is known to be involved in the detoxification process of several classes of insecticides, and GSTe2 in particular is known to have DDT dehydrochlorinase activity. This communication reports a tandem duplication of a genomic region encoding GSTe2 and GSTe4 genes in a laboratory-colonized DDT-resistant Anopheles stephensi. We identified duplication breakpoints and the organization of gene duplication through Sanger sequencing performed on long-PCR products. Manual annotation of sequences revealed a tandemly-arrayed duplication of a 3.62 kb segment of GST epsilon gene clusters comprised of five genes: a partial GSTe1, GSTe2, GSTe2-pseudogene, GSTe4 and partial GSTe5, interconnected by a conserved 2.42 kb DNA insert segment major part of which is homologous to a genomic region located on a different chromosome. The tandemly duplicated array contained a total of two GSTe2 and three GSTe4 functional paralog genes. Read-depth coverage and split-read analysis of Illumina-based whole-genome sequence reads confirmed the presence of duplication in the corresponding region of the genome. The increased gene dose in mosquitoes as a result of the GSTe gene-duplication may be an adaptive process to increase levels of detoxifying enzymes to counter insecticide pressure.


Assuntos
Anopheles , Inseticidas , Animais , Anopheles/metabolismo , DDT/farmacologia , DDT/metabolismo , Inseticidas/metabolismo , Resistência a Inseticidas/genética , Xenobióticos , Glutationa Transferase/metabolismo , Genômica , Glutationa
16.
Front Endocrinol (Lausanne) ; 13: 981090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246927

RESUMO

Background: The thyroid hormone receptor-like (THR-like) family is the largest transcription factors family belonging to the nuclear receptor superfamily, which directly binds to DNA and regulates the gene expression and thereby controls various metabolic processes in a ligand-dependent manner. The THR-like family contains receptors THRs, RARs, VDR, PPARs, RORs, Rev-erbs, CAR, PXR, LXRs, and others. THR-like receptors are involved in many aspects of human health, including development, metabolism and homeostasis. Therefore, it is considered an important therapeutic target for various diseases such as osteoporosis, rickets, diabetes, etc. Methods: In this study, we have performed an extensive sequence and structure analysis of the ligand-binding domain (LBD) of the THR-like family spanning multiple taxa. We have use different computational tools (information-theoretic measures; relative entropy) to predict the key residues responsible for fold and functional specificity in the LBD of the THR-like family. The MSA of THR-like LBDs was further used as input in conservation studies and phylogenetic clustering studies. Results: Phylogenetic analysis of the LBD domain of THR-like proteins resulted in the clustering of eight subfamilies based on their sequence homology. The conservation analysis by relative entropy (RE) revealed that structurally important residues are conserved throughout the LBDs in the THR-like family. The multi-harmony conservation analysis further predicted specificity in determining residues in LBDs of THR-like subfamilies. Finally, fold and functional specificity determining residues (residues critical for ligand, DBD and coregulators binding) were mapped on the three-dimensional structure of thyroid hormone receptor protein. We then compiled a list of natural mutations in THR-like LBDs and mapped them along with fold and function-specific mutations. Some of the mutations were found to have a link with severe diseases like hypothyroidism, rickets, obesity, lipodystrophy, epilepsy, etc. Conclusion: Our study identifies fold and function-specific residues in THR-like LBDs. We believe that this study will be useful in exploring the role of these residues in the binding of different drugs, ligands, and protein-protein interaction among partner proteins. So this study might be helpful in the rational design of either ligands or receptors.


Assuntos
Receptores dos Hormônios Tireóideos , Raquitismo , DNA , Humanos , Ligantes , Receptores Ativados por Proliferador de Peroxissomo/genética , Filogenia , Receptores dos Hormônios Tireóideos/genética , Fatores de Transcrição/metabolismo
18.
Med Vet Entomol ; 36(4): 496-502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35838413

RESUMO

Three Anopheles stephensi biotypes have historically been differentiated through variations in the mode numbers of egg ridges and adult spiracular indices. Anopheles stephensi odorant-binding protein 1 gene (AsteObp1) sequences in Iran and Afghanistan have been recently interpreted to suggest that the three biotypes are sibling species. AsteObp1 intron 1 sequences, mode numbers of egg ridges and spiracular indices of An. stephensi in Jaffna city in Sri Lanka were therefore investigated in field-collected mosquitoes and short-term laboratory colonies established from them. AsteObp1 intron 1 sequences revealed the region to be polymorphic with four unique sequences, ASJF1-4, present in both short-term laboratory colonies and field-collected An. stephensi. The spiracular index did not relate to the mode number of egg ridges in Jaffna An. stephensi. The results suggested that numbers of egg ridges, spiracular indices and AsteObp1 intron 1 sequences were not useful for differentiating An. stephensi biotypes in Jaffna. It is proposed that the observed differences between An. stephensi mosquitoes in Jaffna now result from normal population variance in the context of rapidly changing bionomics in India and northern Sri Lanka.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Íntrons , Sri Lanka , Malária/veterinária
19.
PLoS One ; 17(7): e0270760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35862377

RESUMO

BACKGROUND: Anopheles stephensi, an invasive malaria vector, has been reported to have three biological forms identifiable mainly based on the number of ridges present on the egg's floats. Recently, the first intron of the odorant-binding protein-1 (AsteObp1) has been introduced as a molecular marker for the identification of these forms, and based on this marker, the presence of three putative sibling species (designated as species A, B and C) has been proposed. However, there is no data on the association of proposed markers with biological form or putative species on field populations. METHODS: Field collected and laboratory-reared An. stephensi were characterized for biological forms based on the number of ridges on the egg's float. DNA sequencing of the partial AsteObp1 gene of An. stephensi individuals were performed by Sanger's method, either directly or after cloning with a plasmid vector. Additionally, AsteObp1 sequences of various laboratory lines of An. stephensi were retrieved from a public sequence database. RESULTS: AsteObp1 intron-1 in Indian An. stephensi populations are highly polymorphic with the presence of more than 13 haplotypes exhibiting nucleotides as well as length-polymorphism (90-to-121 bp). No specific haplotype or a group of closely related haplotypes of intron-1 was found associated with any biological form identified morphologically. High heterozygosity for this marker with a low inbreeding coefficient in field and laboratory populations indicates that this marker is not suitable for the delimitation of putative sibling species, at least in Indian populations. CONCLUSIONS: AsteObp1 cannot serve as a marker for identifying biological forms of An. stephensi or putative sibling species in Indian populations.


Assuntos
Anopheles , Proteínas de Insetos , Receptores Odorantes , Animais , Anopheles/genética , Sequência de Bases , Proteínas de Insetos/genética , Íntrons/genética , Mosquitos Vetores , Receptores Odorantes/genética
20.
Med Vet Entomol ; 36(2): 194-202, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35182085

RESUMO

Anopheles fluviatilis James (Diptera: Culicidae) represents a complex that comprises four sibling species (S, T, U, and V). Among these, species T is widely distributed in India. Chromosomal inversion polymorphism exists among different geographic populations of An. fluviatilis species T; however, population genetic structure is not understood. This study inferred a genetic structure among six geographically diverse populations of species T using a panel of microsatellite markers. Analyses indicated a significant but low genetic differentiation among the majority of the studied populations. A significant correlation was observed between genetic and geographic distances, exhibiting stepwise migration patterns among populations.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Estruturas Genéticas , Genética Populacional , Índia/epidemiologia , Malária/veterinária , Mosquitos Vetores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...