Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 11(30): 11019-11031, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37538294

RESUMO

Atmospheric water harvesting is a sustainable solution to global water shortage, which requires high efficiency, high durability, low cost, and environmentally friendly water collectors. In this paper, we report a novel water collector design based on a nature-inspired hybrid superhydrophilic/superhydrophobic aluminum surface. The surface is fabricated by combining laser and chemical treatments. We achieve a 163° contrast in contact angles between the superhydrophilic pattern and the superhydrophobic background. Such a unique superhydrophilic/superhydrophobic combination presents a self-pumped mechanism, providing the hybrid collector with highly efficient water harvesting performance. Based on simulations and experimental measurements, the water harvesting rate of the repeating units of the pattern was optimized, and the corresponding hybrid collector achieves a water harvesting rate of 0.85 kg m-2 h-1. Additionally, our hybrid collector also exhibits good stability, flexibility, as well as thermal conductivity and hence shows great potential for practical application.

2.
iScience ; 26(6): 106797, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250778

RESUMO

Eco-friendly, efficient, and durable electrocatalysts from earth-abundant materials are crucial for water splitting through hydrogen and oxygen generation. However, available methods to fabricate electrocatalysts are either hazardous and time-consuming or require expensive equipment, hindering the large-scale, eco-friendly production of artificial fuels. Here, we present a rapid, single-step method for producing MoSx/NiF electrocatalysts with controlled sulfur-vacancies via electric-field-assisted pulsed laser ablation (EF-PLA) in liquid and in-situ deposition on nickel foam, enabling efficient water splitting. Electric-field parameters efficiently control S-vacancy active sites in electrocatalysts. Higher electric fields yield a MoSx/NiF electrocatalyst with a larger density of S-vacancy sites, suited for HER due to lower Gibbs free energy for H∗ adsorption, while lower electric fields produce an electrocatalyst with lower S-vacancy sites, better suited for OER, as shown by both experimental and theoretical results. The present work opens a horizon in designing high-efficiency catalysts, for a wide range of chemical reactions.

3.
Int J Hydrogen Energy ; 46(18): 10783-10788, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33737761

RESUMO

In this work, we report on the creation of a black copper via femtosecond laser processing and its application as a novel electrode material. We show that the black copper exhibits an excellent electrocatalytic activity for hydrogen evolution reaction (HER) in alkaline solution. The laser processing results in a unique microstructure: microparticles covered by finer nanoparticles on top. Electrochemical measurements demonstrate that the kinetics of the HER is significantly accelerated after bare copper is treated and turned black. At -0.325 V (v.s. RHE) in 1 M KOH aqueous solution, the calculated area-specific charge transfer resistance of the electrode decreases sharply from 159 Ω cm2 for the untreated copper to 1 Ω cm2 for the black copper. The electrochemical surface area of the black copper is measured to be only 2.4 times that of the untreated copper and therefore, the significantly enhanced electrocatalytic activity of the black copper for HER is mostly a result of its unique microstructure that favors the formation and enrichment of protons on the surface of copper. This work provides a new strategy for developing high-efficient electrodes for hydrogen generation.

4.
Nanoscale ; 13(2): 1311-1317, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33410442

RESUMO

We introduce a phase change material (PCM) based metal-dielectric-metal (MDM) cavity of gold (Au)-antimony trisulfide (Sb2S3)-Au as a hot electron photodetector (HEPD). Sb2S3 shows significant contrast in the bandgap (Eg) upon phase transition from the crystalline (Cry) (Eg = 2.01 eV) to the amorphous (Amp) (Eg = 1.72 eV) phase and forms the lowest Schottky barrier with Au in its Amp phase compared to conventional semiconductors such as Si, MoS2, and TiO2. The proposed HEPD is tunable for absorption and responsivity in the spectral range of 720 nm < λ < 1250 nm for the Cry phase and 604 nm < λ < 3542 nm for the Amp phase. The single resonance cavity and thus the sensitivity of the designed HEPD device can be changed to the double resonance cavity via the Cry to Amp phase transition. The maximum predicted responsivities for the single and double cavities are 20 and 24 mA W-1, respectively, at 950 nm and 1050 nm wavelengths which is the highest among all previously proposed planar HEPD devices. An anti-symmetric resonance mode at a higher wavelength is observed in the double cavity with 100% absorption. Owing to a high index of Sb2S3, an ultrathin ∼40 nm (∼λ/15) MDM cavity supports a critical light coupling to achieve high-efficiency HEPDs. Furthermore, a reversible and ultrafast (∼70 ns) Cry to Amp phase transition of Sb2S3 makes it suitable for many tunable photonics applications ranging from the visible to near-infrared region. Finally, we have introduced a novel scheme to switch between the single and double cavity by exploiting a semiconductor to metal phase transition in a PCM called VO2. The integration of VO2 as a coupling medium in the double cavity has increased the responsivity up to 50% upon phase transition to the metal phase. The proposed design can be used in optical filters, optical switches, ultrathin broad or narrow band solar absorbers, and other energy applications such as water splitting.

5.
Nanotechnology ; 32(9): 095207, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33203809

RESUMO

Structural phase transition induced by temperature or voltage in phase change materials has been used for many tunable photonic applications. Exploiting reversible and sub-ns fast switching in antimony trisulfide (Sb2S3) from amorphous (Amp) to crystalline (Cry), we introduced a reflection modulator based on metal-dielectric-metal structure. The proposed design exhibits tunable, perfect, and multi-band absorption from visible to the near-infrared region. The reflection response of the system shows >99% absorption of light at normal incidence. The maximum achievable modulation efficiency with a narrow line width is ∼98%. Interestingly, the designed cavity supports critical resonance in an ultrathin (∼λ/15) Sb2S3 film with perfect, broadband, and tunable absorption. Finally, we proposed a novel hybrid cavity design formed of Cry and Amp Sb2S3 thin films side-by-side to realize an optical modulator via relative motion between the incident light beam and cavity. The proposed lithographic free structure can be also used for filtering, optical switching, ultrathin photo-detection, solar energy harvesting, and other energy applications.

6.
Opt Lett ; 45(13): 3769-3772, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630950

RESUMO

Nanostructure and nanoantenna-based all-optical (AO) devices have attracted significant research interests in recent years due to their small size, high information capacity, ultrafast processing, low power consumption, and overall practicality. Here, in this Letter, we propose a novel metasurface having quasi-rhombus-shaped antennas to modulate optical modes in a dielectric-loaded waveguide for the realization of a complete family of logic gates including NOT, AND, OR, XOR, NAND, NOR, and XNOR. These logic operations are realized using destructive and constructive interferences between the input optical signals. The high contrast ratios of about 33.39, 27.69, and 33.11 dB are achieved for the NAND, NOR, and XNOR logic gates, respectively, with the speed as high as 108 Gb/s.

7.
Small ; 16(24): e2001417, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32407005

RESUMO

Triple-cation mixed metal halide perovskites are important optoelectronic materials due to their high photon to electron conversion efficiency, low exciton binding energy, and good thermal stability. However, the perovskites have low photon to electron conversion efficiency in near-infrared (NIR) due to their weak intrinsic absorption at longer wavelength, especially near the band edge and over the bandgap wavelength. A plasmonic functionalized perovskite photodetector (PD) is designed and fabricated in this study, in which the perovskite ((Cs0.06 FA0.79 MA0.15 )Pb(I0.85 Br0.15 )3 ) active materials are spin-coated on the surface of Au bowtie nanoantenna (BNA) arrays substrate. Under 785 nm laser illumination, near the bandedge of perovskite, the fabricated BNA-based plasmonic PD exhibits ≈2962% enhancement in the photoresponse over the Si/SiO2 -based normal PD. Moreover, the detectivity of the plasmonic PD has a value of 1.5 × 1012 with external quantum efficiency as high as 188.8%, more than 30 times over the normal PD. The strong boosting in the plasmonic PD performance is attributed to the enhanced electric field around BNA arrays through the coupling of localized surface plasmon resonance. The demonstrated BNA-perovskite design can also be used to enhance performance of other optoelectronic devices, and the concept can be extended to other spectral regions with different active materials.

8.
Appl Surf Sci ; 506: 144952, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32184533

RESUMO

Femtosecond laser-induced surface structuring is a promising technique for the large-scale formation of nano- and microscale structures that can effectively modify materials' optical, electrical, mechanical, and tribological properties. Here we perform a systematic study on femtosecond laser-induced surface structuring on gold (Au) surface and their effect on both hydrophobicity and bacterial-adhesion properties. We created various structures including subwavelength femtosecond laser-induced periodic surface structures (fs-LIPSSs), fs-LIPSSs covered with nano/microstructures, conic and 1D-rod-like structures ( ≤ 6 µm), and spherical nanostructures with a diameter ≥ 10 nm, by raster scanning the laser beam, at different laser fluences. We show that femtosecond laser processing turns originally hydrophilic Au to a superhydrophobic surface. We determine the optimal conditions for the creation of the different surface structures and explain the mechanism behind the formed structures and show that the laser fluence is the main controlling parameter. We demonstrate the ability of all the formed surface structures to reduce the adhesion of Escherichia coli (E. coli) bacteria and show that fs-LIPSSs enjoys superior antibacterial adhesion properties due to its large-scale surface coverage. Approximately 99.03% of the fs-LIPSSs surface is free from bacterial adhesion. The demonstrated physical inhibition of bacterial colonies and biofilm formation without antibiotics is a crucial step towards reducing antimicrobial-resistant infections.

9.
Nanoscale Adv ; 2(7): 2958-2967, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36132409

RESUMO

The study of femtosecond laser structural coloring has recently attracted a great amount of research interest. These studies, however, have only been carried out in air. At the same time, laser ablation has also been actively studied in liquids as they provide a unique environment for material processing. However, surprisingly, structural coloring has never been performed in liquids. In this work, we perform the first study of metal structural coloring in liquid and compare the results to metal structural coloring in air. Colors created in liquid are formed by nanoparticle-induced plasmonic absorption and result in a range of colors transitioning from purple to orange. Surface structures formed in liquid are less hierarchical and more uniform than those formed in air, producing a surface with a much higher reflectance due to reduced light trapping, resulting in a more vibrant color. However, colorization formed in water suffers from less uniform colorization due to turbulence at the air-water and water-target interfaces, resulting in slight changes to the laser beam's focus during processing. Finally, finite-difference-time-domain simulation based on the measured surface structures is used to understand the role of plasmonic resonance in colorization.

10.
ACS Appl Nano Mater ; 2(11): 7362-7371, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31788665

RESUMO

A femtosecond (fs)-laser-processed surface that repels liquid polymer in water is reported in this paper. We define this phenomenon as the "superpolymphobicity". Three-level microstructures (including microgrooves, micromountains/microholes between the microgrooves, and nanoripples on the whole surface) were directly created on the stainless steel surface via fs laser processing. A liquid polydimethylsiloxane (PDMS) droplet on the textured surface had the contact angle of 156 ± 3° and contact angle hysteresis less than 4° in water, indicating excellent underwater superpolymphobicity of the fs-laser-induced hierarchical microstructures. The contact between the resultant superhydrophilic hierarchical microstructures and the submerged liquid PDMS droplet is verified at the underwater Cassie state. The underwater superpolymphobicity enables to design the shape of cured PDMS and selectively avoid the adhesion at the PDMS/substrate interface, different from the previously reported superwettabilities. As the examples, the microlens array and microfluidics system were prepared based on the laser-induced underwater superpolymphobic microstructures.

11.
ACS Appl Electron Mater ; 1(7): 1169-1178, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31367704

RESUMO

The development of a highly responsive, near-zero-biased broadband photo and thermal detector is required for self-powered night vision security, imaging, remote sensing, and space applications. Photothermal-effect-based photodetectors operate on the principle of photothermal heating and can sense radiation from the UV to IR spectral region for broadband photo and thermal detection. This type of photodetector is highly desirable, but few materials have been shown to meet the stringent requirements including broadband optical/thermal absorption with high absorption coefficients, low thermal conductivity, and a large Seebeck coefficient. Here, we demonstrate ultraresponsive, near-zero-biased photodetectors made of mass-producible Cu2±x Se nanomaterials. Our photodetectors are fabricated with powder pressing and operate on the principle of negative photoconductivity that utilizes the Seebeck effect under the combined effects of Joule and photothermal heating to detect extremely low levels of broadband optical radiation. We show that copper-deficient Cu1.8Se and selenium-deficient Cu2.5Se copper selenide materials have negative photoconductivity. However, stochiometric Cu2Se copper selenide shows positive photoconductivity. We demonstrate that a photodetector made from the Ag:n+-Cu1.8Se:p-Ag:n+ system has the best photoresponse and generates a 520 mA/mm negative photocurrent and a high responsivity of 621 A/W under low bias.

12.
Langmuir ; 35(28): 9318-9322, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31264877

RESUMO

In this work, the surfaces that repel liquid polydimethylsiloxane (PDMS) droplets in water were created by femtosecond laser treatment. We define this superwetting phenomenon as underwater "superpolymphobicity". The resultant underwater superpolymphobic silicon surface shows a contact angle of 159 ± 1° and a sliding angle of 1.5 ± 0.5° to liquid PDMS droplets in water. This underwater superpolymphobicity can be achieved on a wide range of hydrophilic materials, including semiconductors, glass, and metals. The adhesion between the liquid polymer and a solid substrate is effectively prevented by the underwater superpolymphobic microstructures. The underwater superpolymphobicity will have a great significance in designing the adhesion between the polymer and a solid substrate, controlling the shape of the cured polymer materials, as well as nearly all the applications based on the polymer materials.

13.
Light Sci Appl ; 8: 53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231519

RESUMO

Metasurfaces are two-dimensional nanoantenna arrays that can control the propagation of light at will. In particular, plasmonic metasurfaces feature ultrathin thicknesses, ease of fabrication, field confinement beyond the diffraction limit, superior nonlinear properties, and ultrafast performances. However, the technological relevance of plasmonic metasurfaces operating in the transmission mode at optical frequencies is questionable due to their limited efficiency. The state-of-the-art efficiency of geometric plasmonic metasurfaces at visible and near-infrared frequencies, for example, is ≤10%. Here, we report a multipole-interference-based transmission-type geometric plasmonic metasurface with a polarization conversion efficiency that reaches 42.3% at 744 nm, over 400% increase over the state of the art. The efficiency is augmented by breaking the scattering symmetry due to simultaneously approaching the generalized Kerker condition for two orthogonal polarizations. In addition, the design of the metasurface proposed in this study introduces an air gap between the antennas and the surrounding media that confines the field within the gap, which mitigates the crosstalk between meta-atoms and minimizes metallic absorption. The proposed metasurface is broadband, versatile, easy to fabricate, and highly tolerant to fabrication errors. We highlight the technological relevance of our plasmonic metasurface by demonstrating a transmission-type beam deflector and hologram with record efficiencies.

14.
Nanomaterials (Basel) ; 9(5)2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109104

RESUMO

We analyzed the formation of the aluminum (Al) nanoparticles (NPs) with triangular shape obtained by ablating Al bulk in liquid using pulses with different durations (5 ns, 200 ps, and 30 fs) and wavelengths (355 nm, 800 nm, and 1064 nm). We report three stages of synthesis and aging of Al NPs: Formation, transformation, and stable stage. The NPs prepared by different pulses are almost identical at the initial stage. The effects of duration and wavelength of the ablation pulses on the aging of NPs are revealed. Pulse duration is determined to be essential for morphological transformation of NPs, while pulse wavelength strongly influences particle sizes. NPs produced by ultra-short pulses have smaller sizes and narrow size distribution. We demonstrate that oxidation and hydrolysis of Al in water are the results of ablation for all pulse durations and wavelengths, which also strongly modify the preferable reaction path of NPs in water, thus affecting the composition and morphology of triangle NPs. The results of modeling of the NPs generation in water due to a 50 ps laser pulse interacting with a thick Al target are presented. Water-based effects in the formation of NPs, their evolution, and solidification are considered from the mechanical and thermophysical points of view. The detailed analysis of the modeling results allowed for determination of the main mechanism responsible for the ablation process followed by the NPs formation.

15.
Opt Lett ; 44(7): 1654-1657, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933114

RESUMO

Metasurfaces can control the propagation of free space and guided modes by imparting a phase gradient and modifying the mode propagation properties. Here we propose a design to control optical signals in a dielectric-loaded waveguide using quasi-rhombus gradient plasmonic metasurface structure. The metasurface acts as a multimode interference coupler that can focus, route, and split the propagating field in UV-visible spectral range. The ability to gain full control on waveguided mode with minimal footprint can significantly impact miniaturization of optical devices and photonic integrated circuits.

16.
Langmuir ; 35(9): 3562-3567, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30759979

RESUMO

The world is facing a global issue of water scarcity where two-thirds of the population does not have access to safe drinking water. Water harvesting from the ambient environment has a potential equivalent to ∼10% of the fresh water available on the earth's surface, but its efficiency requires a special control of surface morphology. We report a novel facile physicochemical hybrid method that combines femtosecond laser structuring with hydrothermal treatment to create a surface with a well-arranged hierarchical nanoneedle structures. Polydimethylsiloxane treatment of the thus-produced hierarchical structures nurtured superhydrophobic functionality with a very low water sliding angle (∼3°) and a high water adhesion ability. About 2.2 times higher water-collection efficiency was achieved using hierarchical structures over untreated flat Ti surfaces of the same area under a given experimental condition. The comparison of water-collection behavior with other samples showed that the improved efficiency is due to the structure, and wettability induced superior water attraction and removal ability. Moreover, a uniform water condensation under low humidity (28%) is achieved, which has potential applications in harvesting water from arid environments and in high-precision drop control.

17.
Langmuir ; 35(4): 921-927, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30609378

RESUMO

A range of different superwettabilities were obtained on femtosecond laser-structured Al surfaces. The formation mechanism of each superwetting state is discussed in this paper. It is revealed that the underwater oil droplet and bubble wettabilities of a solid surface have a close relationship with its water wettability. The laser-induced hierarchical microstructures showed superhydrophilicity in air but showed superoleophobicity/superaerophobicity after immersion in water. When such microstructures were further modified with a low-surface-energy monolayer, the wettability of the resultant surface would turn to superhydrophobicity with ultralow water adhesion in air and superoleophilicity/superaerophilicity in water. The understanding of the relationship among the above-mentioned six different superwettabilities is highly important in the design of various superwetting microstructures, transforming the structures from one superwetting state to another state and better using the artificial superwetting materials.

18.
ACS Appl Mater Interfaces ; 11(8): 8667-8675, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30698002

RESUMO

In this paper, the reversible switching between underwater (super-) aerophilicity and superaerophobicity was achieved on various femtosecond (fs) laser-induced superhydrophobic surfaces. A range of materials including Al, stainless steel, Cu, Ni, Si, poly(tetrafluoroethylene), and polydimethylsiloxane were first transformed to superhydrophobic after the formation of surface microstructures through fs laser treatment. These surfaces showed (super-) aerophilicity when immersed in water. In contrast, if the surface was prewetted with ethanol and then dipped into water, the surfaces showed superaerophobicity in water. The underwater aerophilicity of the superhydrophobic substrates could easily recover by drying. The switching between the underwater aerophilicity and superaerophobicity can be fast repeated many cycles and is substrate-independent in stark contrast to common wettability-switchable surfaces based on stimuli-responsive chemistry. Therefore, the as-prepared superhydrophobic surfaces can capture or repel air bubbles in water by selectively switching between underwater superaerophobicity and aerophilicity. Finally, we demonstrated that the underwater bubbles could pass through an underwater aerophilic porous sheet but were intercepted by an underwater superaerophobic porous sheet. The selective passage of the underwater bubbles was achieved by the reversible switching between the underwater aerophilicity and superaerophobicity. We believe that this substrate-independent and fast method of switching air wettability has important applications in controlling air behavior in water.

19.
Mater Today Chem ; 14: 100207, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31903442

RESUMO

Hydrogen is considered as an ideal and sustainable energy carrier because of its high energy density and carbon-free combustion. Electrochemical water splitting is the only solution for uninterrupted, scalable, and sustainable production of hydrogen without carbon emission. However, a large-scale hydrogen production through electrochemical water splitting depends on the availability of earth-abundant electrocatalysts and a suitable electrolyte medium. In this article, we demonstrate that hydrogen evolution reaction (HER) performance of electrocatalytic materials can be controlled by their surface functionalization and selection of a suitable electrolyte solution. Here, we report syntheses of few-layered MoS2 nanosheets, NiO nanoparticles (NPs), and multiwalled carbon nanotubes (MWCNTs) using scalable production methods from earth-abundant materials. Magnetic measurements of as-produced electrocatalyst materials demonstrate that MoS2 nanoflakes are diamagnetic, whereas surface-functionalized MoS2 and its composite with carbon nanotubes have strong ferromagnetism. The HER performance of the few-layered pristine MoS2 nanoflakes, MoS2/NiO NPs, and MoS2/NiO NPs/MWCNT nanocomposite electrocatalysts are studied in acidic and alkaline media. For bare MoS2, the values of overpotential (η10) in alkaline and acidic media are 0.45 and 0.54 V, respectively. Similarly, the values of current density at 0.5 V overpotential are 27 and 6.2 mA/cm2 in alkaline and acidic media, respectively. The surface functionalization acts adversely in the both alkaline and acidic media. MoS2 nanosheets functionalized with NiO NPs also demonstrated excellent performance for oxygen evolution reaction with anodic current of ~60 mA/cm2 and Tafel slope of 78 mVdec-1 in alkaline medium.

20.
ACS Appl Polym Mater ; 1(11): 2819-2825, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33283193

RESUMO

A strategy is proposed here to fabricate microfluidic channels based on underwater superpolymphobic microgrooves with nanoscale rough surface structure on glass surface produced by femtosecond (fs) laser processing. The fs laser-induced micro/nanostructure on glass surface can repel liquid polydimethylsiloxane (PDMS) underwater, with the contact angle (CA) of 155.5 ± 2.5° and CA hysteresis of 2.7 ± 1.5° to a liquid PDMS droplet. Such a phenomenon is defined as the underwater "superpolymphobicity". Microchannels as well as microfluidic systems are easily prepared and formed between the underwater superpolymphobic microgroove-textured glass substrate and the cured PDMS layer. Because the tracks of the laser scanning lines are programmable, arbitrary-shaped microchannels and complex microfluidic systems can be potentially designed and prepared through fs laser direct writing technology. The concept of "underwater superpolymphobicity" presented here offers us a new strategy for selectively avoiding the adhesion at the polymer/substrate interface and controlling the shape of cured polymers; none of these applications can find analogues in previously reported superwetting materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...