Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Cancer Res ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888469

RESUMO

Fibrolamellar hepatocellular carcinoma (FLC) is a rare liver cancer that is driven by a fusion of DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). PKA activity is controlled through regulatory proteins that both inhibit catalytic activity and control localization, and an excess of regulatory subunits ensures PRKACA activity is inhibited. Here, we found an increase in the ratio of catalytic to regulatory units in FLC patient tumors driven by DNAJB1::PRKACA using mass spectrometry, biochemistry, and immunofluorescence, with increased nuclear localization of the kinase. Overexpression of DNAJB1::PRKACA, ATP1B1::PRKACA, or PRKACA, but not catalytically inactive kinase, caused similar transcriptomic changes in primary human hepatocytes, recapitulating the changes observed in FLC. Consistently, tumors in patients missing a regulatory subunit or harboring an ATP1B1::PRKACA fusion were indistinguishable from FLC based on the histopathological, transcriptomic, and drug-response profiles. Together, these findings indicate that the DNAJB1 domain of DNAJB1::PRKACA is not required for FLC. Instead, changes in PKA activity and localization determine the FLC phenotype.

2.
Cells ; 13(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38727292

RESUMO

Integrin α4ß7+ T cells perpetuate tissue injury in chronic inflammatory diseases, yet their role in hepatic fibrosis progression remains poorly understood. Here, we report increased accumulation of α4ß7+ T cells in the liver of people with cirrhosis relative to disease controls. Similarly, hepatic fibrosis in the established mouse model of CCl4-induced liver fibrosis was associated with enrichment of intrahepatic α4ß7+ CD4 and CD8 T cells. Monoclonal antibody (mAb)-mediated blockade of α4ß7 or its ligand mucosal addressin cell adhesion molecule (MAdCAM)-1 attenuated hepatic inflammation and prevented fibrosis progression in CCl4-treated mice. Improvement in liver fibrosis was associated with a significant decrease in the infiltration of α4ß7+ CD4 and CD8 T cells, suggesting that α4ß7/MAdCAM-1 axis regulates both CD4 and CD8 T cell recruitment to the fibrotic liver, and α4ß7+ T cells promote hepatic fibrosis progression. Analysis of hepatic α4ß7+ and α4ß7- CD4 T cells revealed that α4ß7+ CD4 T cells were enriched for markers of activation and proliferation, demonstrating an effector phenotype. The findings suggest that α4ß7+ T cells play a critical role in promoting hepatic fibrosis progression, and mAb-mediated blockade of α4ß7 or MAdCAM-1 represents a promising therapeutic strategy for slowing hepatic fibrosis progression in chronic liver diseases.


Assuntos
Moléculas de Adesão Celular , Progressão da Doença , Integrinas , Cirrose Hepática , Fígado , Mucoproteínas , Animais , Feminino , Humanos , Masculino , Camundongos , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Imunoglobulinas/metabolismo , Inflamação/patologia , Integrinas/metabolismo , Fígado/patologia , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Mucoproteínas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tetracloreto de Carbono/farmacologia , Tetracloreto de Carbono/toxicidade
3.
Abdom Radiol (NY) ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782785

RESUMO

PURPOSE: Gain-of-function mutations in CTNNB1, gene encoding for ß-catenin, are observed in 25-30% of hepatocellular carcinomas (HCCs). Recent studies have shown ß-catenin activation to have distinct roles in HCC susceptibility to mTOR inhibitors and resistance to immunotherapy. Our goal was to develop and test a computational imaging-based model to non-invasively assess ß-catenin activation in HCC, since liver biopsies are often not done due to risk of complications. METHODS: This IRB-approved retrospective study included 134 subjects with pathologically proven HCC and available ß-catenin activation status, who also had either CT or MR imaging of the liver performed within 1 year of histological assessment. For qualitative descriptors, experienced radiologists assessed the presence of imaging features listed in LI-RADS v2018. For quantitative analysis, a single biopsy proven tumor underwent a 3D segmentation and radiomics features were extracted. We developed prediction models to assess the ß-catenin activation in HCC using both qualitative and quantitative descriptors. RESULTS: There were 41 cases (31%) with ß-catenin mutation and 93 cases (69%) without. The model's AUC was 0.70 (95% CI 0.60, 0.79) using radiomics features and 0.64 (0.52, 0.74; p = 0.468) using qualitative descriptors. However, when combined, the AUC increased to 0.88 (0.80, 0.92; p = 0.009). Among the LI-RADS descriptors, the presence of a nodule-in-nodule showed a significant association with ß-catenin mutations (p = 0.015). Additionally, 88 radiomics features exhibited a significant association (p < 0.05) with ß-catenin mutations. CONCLUSION: Combination of LI-RADS descriptors and CT/MRI-derived radiomics determine ß-catenin activation status in HCC with high confidence, making precision medicine a possibility.

4.
JCO Oncol Pract ; : OP2300787, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739872

RESUMO

KRAS mutations are common driver oncogenes associated with the development of several solid tumors. KRAS oncogene has been considered a highly challenging target for drug development because of structural features, including the lack of deep groove on its catalytic unit. However, by leveraging cysteine residues, covalent KRAS inhibitors irreversibly trap KRAS G12C mutants in their inactive GDP-bound state. These agents have resulted in significant clinical responses among patients with KRAS G12C-mutant solid tumors, including patients with colorectal cancer (CRC). Other allele-specific inhibitors of KRAS oncogene and panKRAS and panRAS inhibitors are also currently being investigated in clinical trials. This review article overviews recent clinical progress on KRAS G12C targeting for the management of patients with KRAS G12C-mutant CRC and provides an update on other RAS targeting approaches. We also discuss the unique biological features of RAS-mutant CRC, which require the combination of KRAS inhibitors and anti-epidermal growth factor receptor therapy, and elaborate on resistance mechanisms and novel therapeutic avenues that may define future treatment paradigms of patients with RAS-mutant CRC.

5.
Pancreas ; 53(4): e350-e356, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518061

RESUMO

BACKGROUND: The International Cancer of the Pancreas Screening Consortium recommended annual imaging for individuals at increased risk for developing a pancreatic ductal adenocarcinoma (PDAC) who did not have concerning pancreatic findings or a cyst <3 cm without worrisome features. We aimed to determine if 3-cm cyst size accurately predicted advanced precursor lesions in high-risk individuals undergoing surveillance. METHODS: Imaging for high-risk individuals (HRIs) undergoing PDAC surveillance from 2007 to 2021 was reviewed and pancreatic abnormalities were recorded including dominant cyst size and number of cysts. Subjects were excluded if they had the following: (1) no follow-up imaging after baseline, (2) solid lesion at baseline, or (3) development of solid lesion without having cyst on prior imaging. RESULTS: Five of the 77 HRIs found to have a cystic lesion on surveillance developed a PDAC: 3 with cystic lesion >1 cm as compared with only 2 of 67 HRIs with cystic lesions <1 cm (P < 0.05). None of these cysts developed worrisome findings and 4/5 PDACs did not arise from visualized cystic precursor lesion. CONCLUSIONS: Patients with a cyst ≥1 cm were at increased risk for developing PDAC compared with patients with cyst <1 cm. Pancreatic ductal adenocarcinoma usually did not arise from a recognized cystic lesion.


Assuntos
Carcinoma Ductal Pancreático , Cisto Pancreático , Neoplasias Pancreáticas , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/patologia , Cisto Pancreático/diagnóstico , Pâncreas/patologia , Carcinoma Ductal Pancreático/patologia , Estudos Retrospectivos
6.
Clin Gastroenterol Hepatol ; 22(6): 1245-1254.e10, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382726

RESUMO

BACKGROUND & AIMS: Cytologic and histopathologic diagnosis of non-ductal pancreatic neoplasms can be challenging in daily clinical practice, whereas it is crucial for therapy and prognosis. The cancer methylome is successfully used as a diagnostic tool in other cancer entities. Here, we investigate if methylation profiling can improve the diagnostic work-up of pancreatic neoplasms. METHODS: DNA methylation data were obtained for 301 primary tumors spanning 6 primary pancreatic neoplasms and 20 normal pancreas controls. Neural Network, Random Forest, and extreme gradient boosting machine learning models were trained to distinguish between tumor types. Methylation data of 29 nonpancreatic neoplasms (n = 3708) were used to develop an algorithm capable of detecting neoplasms of non-pancreatic origin. RESULTS: After benchmarking 3 state-of-the-art machine learning models, the random forest model emerged as the best classifier with 96.9% accuracy. All classifications received a probability score reflecting the confidence of the prediction. Increasing the score threshold improved the random forest classifier performance up to 100% with 87% of samples with scores surpassing the cutoff. Using a logistic regression model, detection of nonpancreatic neoplasms achieved an area under the curve of >0.99. Analysis of biopsy specimens showed concordant classification with their paired resection sample. CONCLUSIONS: Pancreatic neoplasms can be classified with high accuracy based on DNA methylation signatures. Additionally, non-pancreatic neoplasms are identified with near perfect precision. In summary, methylation profiling can serve as a valuable adjunct in the diagnosis of pancreatic neoplasms with minimal risk for misdiagnosis, even in the pre-operative setting.


Assuntos
Metilação de DNA , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/patologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade
7.
Trends Cancer ; 10(5): 430-443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38378317

RESUMO

Gene fusions and rearrangements play a crucial role in tumor biology. They are rare events typically detected in KRAS wild-type (WT) pancreatic tumors. Their identification can inform clinical management by enabling precision oncology, as fusions involving BRAF, FGFR2, RET, NTRK, NRG1, and ALK represent actionable targets in KRAS-WT cancers, and serve diagnostic purposes since fusions involving PRKACA/B represent the diagnostic hallmark of intraductal oncocytic papillary neoplasms (IOPNs). Although they are rare, the therapeutic and diagnostic importance of these genomic events should not be underestimated, highlighting the need for quality-ensured molecular diagnostics in the management of cancer. Herein we review the existing literature on the role of fusion genes in pancreatic tumors and their clinical potential as effective biomarkers and therapeutic targets.


Assuntos
Proteínas de Fusão Oncogênica , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas de Fusão Oncogênica/genética , Biomarcadores Tumorais/genética , Receptor trkA/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas B-raf/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Neuregulina-1/genética , Neuregulina-1/metabolismo , Quinase do Linfoma Anaplásico/genética , Fusão Gênica
8.
Nat Commun ; 15(1): 818, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280869

RESUMO

Animal studies have demonstrated the ability of pancreatic acinar cells to transform into pancreatic ductal adenocarcinoma (PDAC). However, the tumorigenic potential of human pancreatic acinar cells remains under debate. To address this gap in knowledge, we expand sorted human acinar cells as 3D organoids and genetically modify them through introduction of common PDAC mutations. The acinar organoids undergo dramatic transcriptional alterations but maintain a recognizable DNA methylation signature. The transcriptomes of acinar organoids are similar to those of disease-specific cell populations. Oncogenic KRAS alone do not transform acinar organoids. However, acinar organoids can form PDAC in vivo after acquiring the four most common driver mutations of this disease. Similarly, sorted ductal cells carrying these genetic mutations can also form PDAC, thus experimentally proving that PDACs can originate from both human acinar and ductal cells. RNA-seq analysis reveal the transcriptional shift from normal acinar cells towards PDACs with enhanced proliferation, metabolic rewiring, down-regulation of MHC molecules, and alterations in the coagulation and complement cascade. By comparing PDAC-like cells with normal pancreas and PDAC samples, we identify a group of genes with elevated expression during early transformation which represent potential early diagnostic biomarkers.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Transcriptoma , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Carcinogênese/patologia , Células Acinares/metabolismo , Perfilação da Expressão Gênica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
9.
J Natl Compr Canc Netw ; 22(1D): e237070, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150819

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by chronic inflammation and a tolerogenic immune response. The granulocyte colony-stimulating factor (G-CSF)-neutrophil axis promotes oncogenesis and progression of PDAC. Despite frequent use of recombinant G-CSF in the management and prevention of chemotherapy-induced neutropenia, its impact on oncologic outcomes of patients with resected PDAC is unclear. PATIENTS AND METHODS: This cohort study assessing the impact of G-CSF administration was conducted on 351 patients with PDAC treated with neoadjuvant therapy (NAT) and pancreatic resection at a high-volume tertiary care academic center from 2014 to 2019. Participants were identified from a prospectively maintained database and had a median follow-up of 45.8 months. RESULTS: Patients receiving G-CSF (n=138; 39.3%) were younger (64.0 vs 66.7 years; P=.008), had lower body mass index (26.5 vs 27.9; P=.021), and were more likely to receive 5-FU-based chemotherapy (42.0% vs 28.2%; P<.0001). No differences were observed in baseline or clinical tumor staging. Patients receiving G-CSF were more likely to have an elevated (>5.53) post-NAT neutrophil-to-lymphocyte ratio (45.0% vs 29.6%; P=.004). G-CSF recipients also demonstrated higher circulating levels of neutrophil extracellular traps (+709 vs -619 pg/mL; P=.006). On multivariate analysis, G-CSF treatment was associated with perineural invasion (hazard ratio [HR], 2.65; 95% CI, 1.16-6.03; P=.021) and margin-positive resection (HR, 1.67; 95% CI, 1.01-2.77; P=.046). Patients receiving G-CSF had decreased overall survival (OS) compared with nonrecipients (median OS, 29.2 vs 38.7 months; P=.001). G-CSF administration was a negative independent predictor of OS (HR, 2.02; 95% CI, 1.45-2.79; P<.0001). In the inverse probability weighted analysis of 301 matched patients, neoadjuvant G-CSF administration was associated with reduced OS. CONCLUSIONS: In patients with localized PDAC receiving NAT prior to surgical extirpation, G-CSF administration may be associated with worse oncologic outcomes and should be further evaluated.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Terapia Neoadjuvante , Estudos de Coortes , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/cirurgia , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Proteínas Recombinantes/efeitos adversos , Estudos Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
10.
Endocr Pathol ; 34(4): 471-483, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792156

RESUMO

Anaplastic thyroid carcinoma (ATC) demonstrates a wide variety of morphologies and is characteristically associated with a differentiated thyroid carcinoma component. Heterologous differentiation is a rare, potentially challenging phenomenon in ATC, mostly observed as osteosarcomatous or chondrosarcomatous differentiation. We now describe a novel 'glomangiosarcoma-like' differentiation, review our archival experience from two institutions (UPMC, CC), and perform a systematic review for the prevalence of heterologous elements in ATC. The patient is a 57-year-old female who presented with 4.5 cm left thyroid, and 3.4 cm neck masses. Histologically, the thyroid demonstrated a differentiated high grade papillary thyroid carcinoma, tall cell and hobnail/micropapillary subtypes transitioning into an anaplastic component with spindled to ovoid cells with hemangiopericytoma-like vasculature showing CD34 positivity, variable muscle marker expression and pericellular lace-like type IV collagen deposition. The neck mass consisted solely of the latter morphology. Targeted next-generation sequencing was performed on high grade DTC and adjacent ATC from the thyroid as well as ATC from the neck metastasis. All three components shared BRAFV600E, TERT promoter, and PIK3CA mutations confirming a clonal origin. Archival (UPMC: n = 150, CC: n = 74) and literature review showed no prior examples. Systematic review and meta-analysis of prevalence showed a baseline pooled prevalence (generalized linear mixed model) of heterologous elements of any type to be 1.6% (95% confidence interval: 1.0-2.6%) for studies where this was specifically addressed. ATC with glomangiosarcoma-like heterologous differentiation is a rarity among an already rare morphologic category with unique diagnostic pitfalls.


Assuntos
Adenocarcinoma , Sarcoma , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Feminino , Humanos , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide , Prevalência , Neoplasias da Glândula Tireoide/patologia , Carcinoma Anaplásico da Tireoide/patologia , Diferenciação Celular , Proteínas Proto-Oncogênicas B-raf/genética
11.
Sci Transl Med ; 15(717): eadf4287, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820009

RESUMO

Immune cell-based therapies are promising strategies to facilitate immunosuppression withdrawal after organ transplantation. Regulatory dendritic cells (DCreg) are innate immune cells that down-regulate alloimmune responses in preclinical models. Here, we performed clinical monitoring and comprehensive assessment of peripheral and allograft tissue immune cell populations in DCreg-infused live-donor liver transplant (LDLT) recipients up to 12 months (M) after transplant. Thirteen patients were given a single infusion of donor-derived DCreg 1 week before transplant (STUDY) and were compared with 40 propensity-matched standard-of-care (SOC) patients. Donor-derived DCreg infusion was well tolerated in all STUDY patients. There were no differences in postoperative complications or biopsy-confirmed acute rejection compared with SOC patients up to 12M. DCreg administration was associated with lower frequencies of effector T-bet+Eomes+CD8+ T cells and CD16bright natural killer (NK) cells and an increase in putative tolerogenic CD141+CD163+ DCs compared with SOC at 12M. Antidonor proliferative capacity of interferon-γ+ (IFN-γ+) CD4+ and CD8+ T cells was lower compared with antithird party responses in STUDY participants, but not in SOC patients, at 12M. In addition, lower circulating concentrations of interleukin-12p40 (IL-12p40), IFN-γ, and CXCL10 were detected in STUDY participants compared with SOC patients at 12M. Analysis of 12M allograft biopsies revealed lower frequencies of graft-infiltrating CD8+ T cells, as well as attenuation of cytolytic TH1 effector genes and pathways among intragraft CD8+ T cells and NK cells, in DCreg-infused patients. These reductions may be conducive to reduced dependence on immunosuppressive drug therapy or immunosuppression withdrawal.


Assuntos
Linfócitos T CD8-Positivos , Transplante de Fígado , Humanos , Células Dendríticas/metabolismo , Doadores Vivos , Células Matadoras Naturais , Interferon gama/metabolismo , Rejeição de Enxerto
12.
Pancreatology ; 23(7): 878-891, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37604731

RESUMO

BACKGROUND: Intraductal papillary mucinous neoplasms (IPMNs) are a cystic precursor to pancreatic cancer. IPMNs deemed clinically to be at high-risk for malignant progression are frequently treated with surgical resection, and pathological examination of the pancreatectomy specimen is a key component of the clinical care of IPMN patients. METHODS: Systematic literature reviews were conducted around eight topics of clinical relevance in the examination of pathological specimens in patients undergoing resection of IPMN. RESULTS: This review provides updated perspectives on morphological subtyping of IPMNs, classification of intraductal oncocytic papillary neoplasms, nomenclature for high-grade dysplasia, assessment of T stage, distinction of carcinoma associated or concomitant with IPMN, role of molecular assessment of IPMN tissue, role of intraoperative assessment by frozen section, and preoperative evaluation of cyst fluid cytology. CONCLUSIONS: This analysis provides the foundation for data-driven approaches to several challenging issues in the pathology of IPMNs.


Assuntos
Adenocarcinoma Mucinoso , Carcinoma Ductal Pancreático , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patologia , Adenocarcinoma Mucinoso/patologia , Estudos Retrospectivos , Neoplasias Pancreáticas/patologia
14.
J Pathol ; 260(4): 455-464, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37345735

RESUMO

Understanding the timing and spectrum of genetic alterations that contribute to the development of pancreatic cancer is essential for effective interventions and treatments. The aim of this study was to characterize somatic ATM alterations in noninvasive pancreatic precursor lesions and invasive pancreatic adenocarcinomas from patients with and without pathogenic germline ATM variants. DNA was isolated and sequenced from the invasive pancreatic ductal adenocarcinomas and precursor lesions of patients with a pathogenic germline ATM variant. Tumor and precursor lesions from these patients as well as colloid carcinoma from patients without a germline ATM variant were immunolabeled to assess ATM expression. Among patients with a pathogenic germline ATM variant, somatic ATM alterations, either mutations and/or loss of protein expression, were identified in 75.0% of invasive pancreatic adenocarcinomas but only 7.1% of pancreatic precursor lesions. Loss of ATM expression was also detected in 31.0% of colloid carcinomas from patients unselected for germline ATM status, significantly higher than in pancreatic precursor lesions [pancreatic intraepithelial neoplasms (p = 0.0013); intraductal papillary mucinous neoplasms, p = 0.0040] and pancreatic ductal adenocarcinoma (p = 0.0076) unselected for germline ATM status. These data are consistent with the second hit to ATM being a late event in pancreatic tumorigenesis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Adenocarcinoma Mucinoso , Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Carcinogênese , Transformação Celular Neoplásica , Adenocarcinoma Mucinoso/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Pancreáticas
15.
Ann Surg Oncol ; 30(12): 7517-7526, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37314541

RESUMO

BACKGROUND: Appendiceal mucinous neoplasms (AMNs) with disseminated disease (pseudomyxoma peritonei) are heterogeneous tumors with variable clinicopathologic behavior. Despite the development of prognostic systems, objective biomarkers are needed to stratify patients. With the advent of next-generation sequencing (NGS), it remains unclear if molecular testing can improve the evaluation of disseminated AMN patients. METHODS: Targeted NGS was performed for 183 patients and correlated with clinicopathologic features to include American Joint Committee on Cancer/World Health Organization (AJCC/WHO) histologic grade, peritoneal cancer index (PCI), completeness of cytoreduction (CC) score, and overall survival (OS). RESULTS: Genomic alterations were identified for 179 (98%) disseminated AMNs. Excluding mitogen-activated protein kinase genes and GNAS due to their ubiquitous nature, collective genomic alterations in TP53, SMAD4, CDKN2A, and the mTOR genes were associated with older mean age, higher AJCC/WHO histologic grade, lymphovascular invasion, perineural invasion, regional lymph node metastasis, and lower mean PCI (p < 0.040). Patients harboring TP53, SMAD4, ATM, CDKN2A, and/or mTOR gene alterations were found to have lower OS rates of 55% at 5 years and 14% at 10 years, compared with 88% at 5 years and 88% at 10 years for patients without the aforementioned alterations (p < 0.001). Based on univariate and multivariate analyses, genomic alterations in TP53, SMAD4, ATM, CDKN2A, and/or the mTOR genes in disseminated AMNs were a negative prognostic factor for OS and independent of AJCC/WHO histologic grade, PCI, CC score, and hyperthermic intraperitoneal chemotherapy treatment (p = 0.006). CONCLUSIONS: Targeted NGS improves the prognostic assessment of patients with disseminated AMNs and identifies patients who may require increased surveillance and/or aggressive management.


Assuntos
Adenocarcinoma Mucinoso , Neoplasias do Apêndice , Neoplasias Peritoneais , Pseudomixoma Peritoneal , Humanos , Pseudomixoma Peritoneal/genética , Pseudomixoma Peritoneal/terapia , Pseudomixoma Peritoneal/metabolismo , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/terapia , Neoplasias do Apêndice/genética , Neoplasias do Apêndice/terapia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/terapia , Neoplasias Peritoneais/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Serina-Treonina Quinases TOR/genética , Procedimentos Cirúrgicos de Citorredução
16.
Cell Mol Gastroenterol Hepatol ; 16(3): 473-495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192689

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in the United States. Tyrosine sulfation, catalyzed by the tyrosylprotein sulfotransferase 2 (TPST2), is a post-translational modification essential for protein-protein interactions and cellular functions. Solute carrier family 35 member B (SLC35B2) is a key transporter that transports the universal sulfate donor 3'-phosphoadenosine 5'-phosphosulfate into the Golgi apparatus where the protein sulfation occurs. The goal of this study was to determine whether and how the SLC35B2-TPST2 axis of tyrosine sulfation plays a role in PDAC. METHODS: Gene expression was analyzed in PDAC patients and mice. Human PDAC MIA PaCa-2 and PANC-1 cells were used for in vitro studies. TPST2-deficient MIA PaCa-2 cells were generated to assess xenograft tumor growth in vivo. Mouse PDAC cells derived from the KrasLSL-G12D/+;Tp53L/+;Pdx1-Cre (KPC) mice were used to generate Tpst2 knockout KPC cells to evaluate tumor growth and metastasis in vivo. RESULTS: High expressions of SLC35B2 and TPST2 were correlated with poor PDAC patient survival. Knocking down SLC35B2 or TPST2, or pharmacologicically inhibiting sulfation, resulted in the inhibition of PDAC cell proliferation and migration in vitro. TPST2-deficient MIA PaCa-2 cells showed inhibited xenograft tumor growth. Orthotopic inoculation of Tpst2 knockout KPC cells in mice showed inhibition of primary tumor growth, local invasion, and metastasis. Mechanistically, the integrin ß4 was found to be a novel substrate of TPST2. Inhibition of sulfation destabilizes integrin ß4 protein, which may have accounted for the suppression of metastasis. CONCLUSIONS: Targeting the SLC35B2-TPST2 axis of tyrosine sulfation may represent a novel approach for therapeutic intervention of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Tirosina , Integrina beta4/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Transportadores de Sulfato , Proteínas de Membrana/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G122-G134, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219012

RESUMO

Expression of transmembrane protein 16 A (TMEM16A), a calcium activated chloride channel, is elevated in some human cancers and impacts tumor cell proliferation, metastasis, and patient outcome. Evidence presented here uncovers a molecular synergy between TMEM16A and mechanistic/mammalian target of rapamycin (mTOR), a serine-threonine kinase that is known to promote cell survival and proliferation in cholangiocarcinoma (CCA), a lethal cancer of the secretory cells of bile ducts. Analysis of gene and protein expression in human CCA tissue and CCA cell line detected elevated TMEM16A expression and Cl- channel activity. The Cl- channel activity of TMEM16A impacted the actin cytoskeleton and the ability of cells to survive, proliferate, and migrate as revealed by pharmacological inhibition studies. The basal activity of mTOR, too, was elevated in the CCA cell line compared with the normal cholangiocytes. Molecular inhibition studies provided further evidence that TMEM16A and mTOR were each able to influence the regulation of the other's activity or expression respectively. Consistent with this reciprocal regulation, combined TMEM16A and mTOR inhibition produced a greater loss of CCA cell survival and migration than their individual inhibition alone. Together these data reveal that the aberrant TMEM16A expression and cooperation with mTOR contribute to a certain advantage in CCA.NEW & NOTEWORTHY This study points to the dysregulation of transmembrane protein 16 A (TMEM16A) expression and activity in cholangiocarcinoma (CCA), the inhibition of which has functional consequences. Dysregulated TMEM16A exerts an influence on the regulation of mechanistic/mammalian target of rapamycin (mTOR) activity. Moreover, the reciprocal regulation of TMEM16A by mTOR demonstrates a novel connection between these two protein families. These findings support a model in which TMEM16A intersects the mTOR pathway to regulate cell cytoskeleton, survival, proliferation, and migration in CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Sobrevivência Celular , Colangiocarcinoma/patologia , Transdução de Sinais , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/metabolismo
18.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36865167

RESUMO

Integrin α 4 ß 7 + T cells perpetuate tissue injury in chronic inflammatory diseases, yet their role in hepatic fibrosis progression remains poorly understood. Here we report increased accumulation of α 4 ß 7 + T cells in the liver of people with cirrhosis relative to disease controls. Similarly, hepatic fibrosis in the established mouse model of CCl 4 -induced liver fibrosis was associated with enrichment of intrahepatic α 4 ß 7 + CD4 and CD8 T cells. Monoclonal antibody (mAb)-mediated blockade of α 4 ß 7 or its ligand mucosal addressin cell adhesion molecule (MAdCAM)-1 attenuated hepatic inflammation and prevented fibrosis progression in CCl 4 treated mice. Improvement in liver fibrosis was associated with a significant decrease in the infiltration of α 4 ß 7 + CD4 and CD8 T cells suggesting that α 4 ß 7 /MAdCAM-1 axis regulates both CD4 and CD8 T cell recruitment to the fibrotic liver, and α 4 ß 7 + T cells promote hepatic fibrosis progression. Analysis of hepatic α 4 ß 7 + and α 4 ß 7 -CD4 T cells revealed that α 4 ß 7 + CD4 T cells enriched for markers of activation and proliferation demonstrating an effector phenotype. Notably, blockade of α 4 ß 7 or MAdCAM-1 did not affect the recruitment of Foxp3+ regulatory T cells, demonstrating the specificity of α 4 ß 7 /MAdCAM-1 axis in regulating effector T cell recruitment to the liver. The findings suggest that α 4 ß 7 + T cells play a critical role in promoting hepatic fibrosis progression, and mAb-mediated blockade of α 4 ß 7 or MAdCAM-1 represents a promising therapeutic strategy for slowing hepatic fibrosis progression in chronic liver diseases.

20.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993495

RESUMO

Background and aims: The immunosuppressive T regulatory cells (Tregs) regulate immune responses and maintain immune homeostasis, yet their functions in nonalcoholic fatty liver disease (NAFLD) pathogenesis remains controversial. Methods: Mice were fed a normal diet (ND) or a western diet (WD) for 16 weeks to induce NAFLD. Diphtheria toxin injection to deplete Tregs in Foxp3 DTR mice or Treg induction therapy in WT mice to augment Treg numbers was initiated at twelve and eight weeks, respectively. Liver tissues from mice and NASH human subjects were analyzed by histology, confocal imaging, and qRT-PCR. Results: WD triggered accumulation of adaptive immune cells, including Tregs and effector T cells, within the liver parenchyma. This pattern was also observed in NASH patients, where an increase in intrahepatic Tregs was noted. In the absence of adaptive immune cells in Rag1 KO mice, WD promoted accumulation of intrahepatic neutrophils and macrophages and exacerbated hepatic inflammation and fibrosis. Similarly, targeted Treg depletion exacerbated WD-induced hepatic inflammation and fibrosis. In Treg-depleted mice, hepatic injury was associated with increased accumulation of neutrophils, macrophages, and activated T cells within the liver. Conversely, induction of Tregs using recombinant IL2/αIL2 mAb cocktail reduced hepatic steatosis, inflammation, and fibrosis in WD-fed mice. Analysis of intrahepatic Tregs from WD-fed mice revealed a phenotypic signature of impaired Treg function in NAFLD. Ex vivo functional studies showed that glucose and palmitate, but not fructose, impaired the immunosuppressive ability of Treg cells. Conclusions: Our findings indicate that the liver microenvironment in NAFLD impairs ability of Tregs to suppress effector immune cell activation, thus perpetuating chronic inflammation and driving NAFLD progression. These data suggest that targeted approaches aimed at restoring Treg function may represent a potential therapeutic strategy for treating NAFLD. Lay summary: In this study, we elucidate the mechanisms contributing to the perpetuation of chronic hepatic inflammation in nonalcoholic fatty liver disease (NAFLD). We show that dietary sugar and fatty acids promote chronic hepatic inflammation in NAFLD by impairing immunosuppressive function of regulatory T cells. Finally, our preclinical data suggest that targeted approaches aimed at restoring T regulatory cell function have the potential to treat NAFLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...