Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888426

RESUMO

BACKGROUND: The mechanisms that regulate multi-annual population dynamics of rodent pest species of cereal crops is often unknown. Better knowledge of such aspects can aid pest management and in turn improve food security and human health. The patterns and processes of the population dynamics of Rattus argentiventer, in rice fields of Indonesia, and Rattus tanezumi, in rice fields of the Philippines were assessed in this article. RESULTS: The meta-analysis of trapping data over 20 years in Indonesia, and 16 years in the Philippines indicated that rodent populations in rice fields did not show a regular multi-annual pattern. Rattus argentiventer populations in Indonesia responded to less rainfall from the current year. Rattus tanezumi populations in the Philippines responded positively to both rainfall and rainfall anomaly with a 1-year time lag. CONCLUSIONS: Our study of long-term population data indicates that certain combinations of rainfall parameters could be useful to predict years when there is higher rodent abundance in rice fields. The key rodent pest species in rice fields in Indonesia (R. argentiventer) and the Philippines (R. tanezumi) differ, and the populations of each species respond differently to rainfall anomalies. Other factors such as crop cover and water availability may also be important and should be considered in future work. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Pest Manag Sci ; 78(10): 4252-4260, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35711128

RESUMO

BACKGROUND: Trapping is a key method for monitoring small mammals and is also one of a number of methods recommended under an ecologically-based rodent management program to control rodent pest populations. Live-traps are widely used globally for studying small mammal populations. In Asia where rodents are major pests of rice, single capture traps typically provide low trap success. We compared the trap success between two types of live-traps in rice fields in Indonesia and the Philippines. RESULTS: Multiple-capture traps (MCTs) in conjunction with a linear trap barrier were significantly more effective in catching rodent pest species than single-capture traps (SCTs) in Indonesia and the Philippines. In Indonesia, MCTs captured more individuals with a mean (±SE) percent trap success rate of (15.54 ± 4.29) compared to SCTs (3.88 ± 1.58). In the Philippines, MCTs captured more species of rodents and had a significantly higher recapture rate (1.96 ± 0.79), than SCTs (0.58 ± 0.32). CONCLUSION: Multiple-capture traps with a linear trap-barrier were more effective for capturing Rattus argentiventer and Rattus tanezumi in rice field ecosystems compared to single-capture traps. MCTs captured more species of rodent pests in the Philippines and recaptured more individuals of each species. These results indicate that rodent populations can be more effectively monitored and controlled by using a multi-capture trap with barrier system than the use of single capture traps on their own. This is the first time these two trap types have been compared for use in rice ecosystems in Asia. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ecossistema , Oryza , Animais , Controle de Pragas , Ratos , Roedores , Sigmodontinae
4.
Integr Zool ; 17(6): 1017-1027, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34695302

RESUMO

The rice field rat, Rattus argentiventer, is a significant pest of rice in Southeast Asia. Fertility control methods have the potential to provide safe and effective alternatives to control methods that often include indiscriminate use of rodenticides or electric barriers. The aim of this laboratory study was to assess uptake of bait coated with different concentrations of the contraceptive hormones, quinestrol (E) and levonorgestrel (P), delivered alone and in combination (i.e. EP-1) and determine the short-term effects on reproductive parameters of adult male and female R. argentiventer. In Experiment 1, 2 concentrations of E, P, and EP-1 (10, 20 ppm) were fed to groups of wild-caught rats for 7 days. In females, both E and EP-1 induced uterine edema. In males, EP-1 reduced epididymis and seminal vesicle weights and lowered sperm motility. However, these responses were inconsistent due to low bait acceptance, especially with increasing concentrations. In Experiment 2, EP-1 (0, 20, 50, 100 ppm) was administered by oral gavage daily for 7 days to male R. argentiventer. There were significant reductions in epididymal and seminal vesicle weights for all oral doses of EP-1, in sperm counts for the 50 ppm dose, and in sperm motility for the 20 and 50 ppm doses compared to the control group. To select the optimum dose of EP-1, we must address the poor acceptance of contraceptive-coated baits by rice field rats. Further research is required to improve the palatability of EP-1 and to test its uptake under field conditions.


Assuntos
Oryza , Quinestrol , Masculino , Feminino , Ratos , Animais , Quinestrol/farmacologia , Motilidade dos Espermatozoides , Anticoncepcionais/farmacologia , Sigmodontinae , Tamanho do Órgão , Sementes , Hormônios/farmacologia
5.
Integr Zool ; 17(6): 1028-1040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34496452

RESUMO

The multimammate mouse, Mastomys natalensis, is the most common rodent pest species in sub-Saharan Africa. Currently, rodenticides are the preferred method used to reduce the population of rodent pests, but this method poses direct and indirect risks to humans and other non-target species. Fertility control is a promising alternative that has been argued to be a more sustainable and humane method for controlling rodent pests. In this study, we compared the effectiveness of fertility control bait EP-1 (quinestrol (E) and levonorgestrel (P), 10 ppm) and an anticoagulant rodenticide bait (bromadiolone, 50 ppm) on the population dynamics of M. natalensis in maize fields in Zambia during 2 cropping seasons. M. natalensis was the most abundant species in maize fields (77% of total captures). Fertility control reduced the number of juveniles and suppressed population growth of M. natalensis at the end of the 2019-2020 cropping season. The population density initially decreased after rodenticide treatment, but the population rapidly recovered through immigration. None of the treatments influenced maize damage by rodents at germination (F2,67 = 1.626, P = 0.204). Applying the treatments during the maize seeding time was effective at suppressing population growth at the end of the cropping season than application the month before maize seeding. This research indicates that a single-dose delivery of EP-1 and rodenticide have comparable effects on the population dynamics of M. natalensis. These findings are important in developing fertility control protocols for rodent pest populations to reduce maize crop damage and improve yields.


Assuntos
Rodenticidas , Zea mays , Humanos , Camundongos , Animais , Rodenticidas/farmacologia , Murinae , Fertilidade , Dinâmica Populacional
6.
Environ Toxicol Chem ; 41(2): 343-355, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34818438

RESUMO

Rice paddies are unique ecosystems that provide rich wetland habitat. Their enduring existence across vast stretches of land has led them to evolve into unique systems serving a diverse assemblage of organisms and sustaining a staple grain for many people. With food demand rising, agricultural intensification through agrochemical application is a common practice used to boost food production in developing countries, including Sri Lanka. The aim of the present study was to assess the concentration of pesticide residues in water in rice ecosystems and discover their potential impacts on both environmental health and the most common fauna groups across a cropping year in Sri Lanka. A total of 270 water samples from waters associated with paddy fields within a watershed were analyzed for 20 commonly used pesticides; in addition, local farm holders were surveyed to assess pesticide usage details in three selected paddy tracts. We then used the Cornell University environmental impact quotient (EIQ) calculator and the ECOTOX Knowledgebase to determine the exposure risk associated with individual pesticides relative to their application rates and aquatic concentrations. Survey results demonstrate that several pesticides were overapplied at rates 1.2-11 times the recommended application, and the EIQ demonstrated high environmental risk of two of the agrochemicals detected, 2-methyl-4-chlorophenoxyacetic and diazinon. Fish, amphibians, insects, and beetles were found to have a wide range of potential adverse outcomes from exposure to diazinon, captan, thiamethoxam, and chlorantraniliprole. To balance the trade-offs between food security and ecosystem sustainability, the present study recommends that adoption of quantifiable environmental health indicators be considered as part of the national policy regulating pesticide use. Environ Toxicol Chem 2022;41:343-355. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Oryza , Praguicidas , Poluentes Químicos da Água , Agricultura , Animais , Diazinon , Ecossistema , Monitoramento Ambiental/métodos , Humanos , Praguicidas/análise , Rios/química , Sri Lanka , Água , Poluentes Químicos da Água/análise
7.
Pest Manag Sci ; 77(10): 4249-4261, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33949075

RESUMO

Rodents present a major problem for food security in Asia where smallholder farming families are particularly vulnerable. We review here recent developments in the biology and management of rodent pests in cereal cropping systems in Asia. The past decade has seen a strong focus on ecologically-based rodent management (EBRM), its adoption in field studies significantly increased rice yields (6-15%) and income (>15%) in seven Asian countries. EBRM principles have also been successfully applied to maize in China. We provide case studies on EBRM in Cambodia, on interactions between rodent pests and weeds, and on the importance of modified wetlands for biodiversity and rodent pest management. Knowledge on post-harvest impacts of rodents is increasing. One research gap is the assessment of human health impacts from a reduction of rodent densities in and around houses. We identify 10 challenges for the next decade. For example, the need for population modelling, a valuable tool missing from our toolbox to manage rodent pests in cereal systems. We also need to understand better the interactive effects of cropping intensification, conservation agriculture and climate change. Finally, new management approaches such as fertility control are on the horizon and need to be considered in the context of smallholder cereal farming systems and mitigating health risks from zoonotic diseases associated with rodents. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Grão Comestível , Roedores , Agricultura , Animais , Ásia , Segurança Alimentar
9.
Oecologia ; 195(3): 601-622, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33369695

RESUMO

Most small rodent populations in the world have fascinating population dynamics. In the northern hemisphere, voles and lemmings tend to show population cycles with regular fluctuations in numbers. In the southern hemisphere, small rodents tend to have large amplitude outbreaks with less regular intervals. In the light of vast research and debate over almost a century, we here discuss the driving forces of these different rodent population dynamics. We highlight ten questions directly related to the various characteristics of relevant populations and ecosystems that still need to be answered. This overview is not intended as a complete list of questions but rather focuses on the most important issues that are essential for understanding the generality of small rodent population dynamics.


Assuntos
Ecossistema , Roedores , Animais , Arvicolinae , Surtos de Doenças , Dinâmica Populacional
10.
Environ Pollut ; 272: 115955, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221087

RESUMO

Identifying the adverse impacts of pesticide exposure is essential to guide regulations that are protective of wildlife and human health. Within rice ecosystems, amphibians are valuable indicators because pesticide applications coincide with sensitive reproductive and developmental life stages. We conducted two experiments using wild cane toads (Rhinella marina) to test 1) whether environmentally relevant exposure to a commercial formulation of butachlor, an acetanilide herbicide used extensively in rice, affects amphibian development and 2) whether cane toad tadpoles are capable of acclimatizing to sub-lethal exposure. First, we exposed wild cane toads to 0.002, 0.02, or 0.2 mg/L of butachlor (Machete EC), during distinct development stages (as eggs and hatchlings, as tadpoles, or continuously) for 12 days. Next, we exposed a subset of animals from the first experiment to a second, lethal concentration and examined survivorship. We found that cane toads exposed to butachlor developed slower and weighed less than controls, and that development of the thyroid gland was affected: exposed individuals had smaller thyroid glands and thyrocyte cells, and more individual follicles. Analyses of the transcriptome revealed that butachlor exposure resulted in downregulation of transcripts related to metabolic processes, anatomic structure development, immune system function, and response to stress. Last, we observed evidence of acclimatization, where animals exposed to butachlor early in life performed better than naïve animals during a second exposure. Our findings indicate that the commercial formulation of butachlor, Machete EC, causes thyroid endocrine disruption in vertebrates, and suggest that exposure in lowland irrigated rice fields presents a concern for wildlife and human health. Furthermore, we establish that developmental assays with cane toads can be used to screen for adverse effects of pesticides in rice fields.


Assuntos
Herbicidas , Oryza , Acetanilidas/toxicidade , Animais , Bufo marinus , Ecossistema , Herbicidas/toxicidade , Humanos , Espécies Introduzidas
11.
Sci Rep ; 10(1): 19797, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188270

RESUMO

This paper examines how a move from traditional post-harvest operations of smallholder rice farms in the Ayeyarwaddy delta, Myanmar, to improved post-harvest operations affected income, energy efficiency and greenhouse gas emissions (GHGE). Harvest and post-harvest losses were investigated in a field experiment with 5 replications per scenario. A comparative analysis on energy efficiency and cost-benefits was conducted for different practices of rice production from cultivation to milling. GHGE of different practices were also considered using a life-cycle assessment approach. The study demonstrates that the mechanized practices increased the net income by 30-50% compared with traditional practices. Despite using additional energy for machine manufacturing and fuel consumption, the mechanized practices significantly reduced postharvest losses and did not increase the total life-cycle enegy and GHGE. Combine harvesting helped to significantly reduce harvesting loss in a range of 3 to 7% (by weight of the rice product). Improved post-harvest management practices with a flatbed dryer and hermetic storage reduced the discoloration of rice grains by 3 to 4% and increased head-rice recovery by 20 to 30% (by weight of rice product). The research findings provide empirical evidence that improved post-harvest management of rice in the Ayeyarwaddy delta, compared to traditional post-harvest operations by smallholder farmers, reduce post-harvest losses and improve the quality of rice. The findings provide valuable information for policy makers involved in formulating evidence-based mechanization policies in South and Southeast Asia.

12.
J Clean Prod ; 244: 118835, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31969774

RESUMO

Sustainability of rice production systems is a prime concern for Asia to maintain food security and to support economic growth. This gain in productivity not only depends on agricultural inputs but also depends on social and environmental factors. To address these emerging issues, new resource- and capital-efficient and profitable technologies have been introduced. The conventional method of rice production (puddling and manual transplanting, PTR) is considered as highly input intensive. As an alternative, dry direct seeded rice (DSR) using seed drill has been promoted to save labor and production costs compared with PTR. Similarly, machine transplanted rice (MTR) has been also considered and promoted in many rice growing countries of South and East Asia. Economic, environmental, and social performances of DSR and MTR (alternative rice establishment technologies) were compared to the PTR using Sustainable Rice Platform (SRP) defined 12 Performance Indicators (PIs) (version 1.0) as a gauge to measure their sustainability. For that, a household survey was conducted on 652 households in Odisha India during 2016. The gaps, i.e., the target to achieve better sustainability, were computed for most of the indicators from the difference between top 10th percentile and the population mean value of the indicator. The results indicated a yield gap of 1.35 t ha-1, a profit gap of $273 ha-1, labor productivity gap of 21 kg day-1, nitrogen (N) use efficiency gap of 22 kg grain kg-1 N, phosphorus (P) use efficiency gap of 105 kg grain kg-1 P, and water productivity gap of 0.00010 kg grain L-1 water in rice production systems in Odisha. Among the compared technologies, MTR results in the highest yield, profit, labor productivity, nitrogen-, phosphorus-use efficiency, and water productivity (at par), and is positive for children's welfare and the overall energy productivity, indicating better sustainability and has the potential to replace PTR. Direct seeded rice has the highest yield gap (1.57 t ha-1; 38%) but has the lowest production cost (can reduce the cost of production by $130 ha-1), and the highest greenhouse gas (GHG) reduction potential. SRP PIs are capable for assessing the sustainability of rice establishment technologies except for a few indicators, for example food safety and workers health and safety, which are more applicable to watershed and household level indicators, respectively. The SRP PIs provide scientific evidence and practical impetus for the selection and promotion of sustainable rice production technologies.

13.
Integr Zool ; 14(4): 396-409, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30983096

RESUMO

Rodents and weeds are important pests to rice crops in Southeast Asia. The interaction between these 2 major pests is poorly documented. In temperate cereal systems, seeds of grass weeds can be an important food source for rodents and weed cover along crop margins provides important refuge for rodents. In 2012 and 2013, a replicated study (n = 4) in Bago, Myanmar compared 4 treatments (rodents and weeds; no rodents and weeds; rodents and no weeds; no rodents and no weeds) each of 0.25 ha in transplanted rice. Weeds were managed with hand weeding in the wet season, and hand weeding and herbicides in the dry season. Plastic fences were installed to exclude rodents. We examined the weed cover and relative abundance of weed species, rodent damage, rodent population dynamics and rice yield loss caused by rodents and weeds. The dominant rodent species was Bandicota bengalensis. In the dry season, Cyperus difformis was dominant at the tillering stage and Echinochloa crus-galli was the dominant weed species at the booting stage. In the wet season E. crus-galli was a dominant weed throughout the season. Damage by rodents was higher in the dry season. There were larger economic benefits for best weed management and effective rodent control in the dry season (258 US$/ha) than in the wet season (30 US$/ha). Concurrent control of weeds in and around rice fields combined with coordinated community trapping of rodents during the early tillering stage and ripening stage of rice are recommended management options.


Assuntos
Agricultura , Ecossistema , Oryza , Plantas Daninhas , Roedores , Animais , Herbicidas , Dinâmica Populacional , Controle de Roedores
14.
Ecotoxicology ; 26(10): 1293-1304, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28936635

RESUMO

Increased pesticide use in rice agricultural ecosystems may alter competitive interactions between invasive and native amphibian species. We conducted an experiment with two rice paddy amphibians found in Luzon, Philippines, the invasive cane toad (Rhinella marina) and the endemic Luzon wart frog (Fejervarya vittigera), to determine whether exposure to a common herbicide, butachlor, drives competitive interactions in favor of the invasive amphibian. Our results revealed that competition had a strong effect on the development of both species, but in opposing directions; Luzon wart frog tadpoles were smaller and developed slower than when raised alone, whereas cane toad tadpoles were larger and developed faster. Contrary to our predictions, development and survival of endemic wart frog tadpoles was not affected by butachlor, whereas invasive cane toad tadpoles were affected across several endpoints including gene expression, body size, and survival. We also observed an interaction between pesticide exposure and competition for the cane toad, where survival declined but body size and expression of thyroid sensitive genes increased. Taken together, our findings indicate that the success of the cane toad larvae in rice fields may be best explained by increased rates of development and larger body sizes of tadpoles in response to competition with native Luzon wart frog tadpoles rather than lower sensitivity to a common pesticide. Our results for the cane toad also provide evidence that butachlor can disrupt thyroid hormone mediated development in amphibians, and further demonstrate that important species interactions such as competition can be affected by pesticide exposure in aquatic ecosystems.


Assuntos
Anuros/fisiologia , Poluentes Ambientais/toxicidade , Espécies Introduzidas , Larva/fisiologia , Praguicidas/toxicidade , Animais , Anuros/crescimento & desenvolvimento , Comportamento Competitivo , Ecossistema , Monitoramento Ambiental , Oryza , Filipinas
15.
Pest Manag Sci ; 73(12): 2397-2402, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28556521

RESUMO

Current reactive pest management methods have serious drawbacks such as the heavy reliance on chemicals, emerging genetic rodenticide resistance and high secondary exposure risks. Rodent control needs to be based on pest species ecology and ethology to facilitate the development of ecologically based rodent management (EBRM). An important aspect of EBRM is a strong understanding of rodent pest species ecology, behaviour and spatiotemporal factors. Gaining insight into the behaviour of pest species is a key aspect of EBRM. The landscape of fear (LOF) is a mapping of the spatial variation in the foraging cost arising from the risk of predation, and reflects the levels of fear a prey species perceives at different locations within its home range. In practice, the LOF maps habitat use as a result of perceived fear, which shows where bait or traps are most likely to be encountered and used by rodents. Several studies have linked perceived predation risk of foraging animals with quitting-harvest rates or giving-up densities (GUDs). GUDs have been used to reflect foraging behaviour strategies of predator avoidance, but to our knowledge very few papers have directly used GUDs in relation to pest management strategies. An opportunity for rodent control strategies lies in the integration of the LOF of rodents in EBRM methodologies. Rodent management could be more efficient and effective by concentrating on those areas where rodents perceive the least levels of predation risk. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Controle de Roedores/métodos , Roedores/fisiologia , Animais , Comportamento Animal , Ecologia , Roedores/classificação
17.
PLoS One ; 12(3): e0174554, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28358899

RESUMO

Rodent pests are especially problematic in terms of agriculture and public health since they can inflict considerable economic damage associated with their abundance, diversity, generalist feeding habits and high reproductive rates. To quantify rodent pest impacts and identify trends in rodent pest research impacting on small-holder agriculture in the Afro-Malagasy region we did a systematic review of research outputs from 1910 to 2015, by developing an a priori defined set of criteria to allow for replication of the review process. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We reviewed 162 publications, and while rodent pest research was spatially distributed across Africa (32 countries, including Madagascar), there was a disparity in number of studies per country with research biased towards four countries (Tanzania [25%], Nigeria [9%], Ethiopia [9%], Kenya [8%]) accounting for 51% of all rodent pest research in the Afro-Malagasy region. There was a disparity in the research themes addressed by Tanzanian publications compared to publications from the rest of the Afro-Malagasy region where research in Tanzania had a much more applied focus (50%) compared to a more basic research approach (92%) in the rest of the Afro-Malagasy region. We found that pest rodents have a significant negative effect on the Afro-Malagasy small-holder farming communities. Crop losses varied between cropping stages, storage and crops and the highest losses occurred during early cropping stages (46% median loss during seedling stage) and the mature stage (15% median loss). There was a scarcity of studies investigating the effectiveness of various management actions on rodent pest damage and population abundance. Our analysis highlights that there are inadequate empirical studies focused on developing sustainable control methods for rodent pests and rodent pests in the Africa-Malagasy context is generally ignored as a research topic.


Assuntos
Agricultura , Produtos Agrícolas/parasitologia , Controle Biológico de Vetores , Roedores , África , Animais , Humanos
18.
Pest Manag Sci ; 73(2): 318-324, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27061129

RESUMO

BACKGROUND: We undertook studies on post-harvest losses by rodents in two townships in the Ayeyarwady Delta, Myanmar. Farmers harvest their monsoon rice crop and then stack it on levee banks to await threshing 4-6 weeks later. After threshing and drying, paddy rice is stored in granaries. The amount of grain stored in burrows was collected 4 weeks after harvest by excavating burrows. In grain stores, we quantified the weight of grain consumed by rodents for 3-6 months post-harvest. RESULTS: The dominant species in the field were Bandicota bengalensis and B. indica, whereas in grain stores the dominant species were Rattus rattus and R. exulans. The mean grain stored by rodents in burrows was 1.49 ± 0.9 kg burrow-1 in 2013 and 1.41 ± 0.7 kg burrow-1 in 2014. The mean loss of grain in granaries was higher in Daik U (14% in 2013, 4% in 2014) than in Maubin (8.2% in 2013, 1.2% in 2014). The total amount of grain lost to rodents during piling and storing could feed households for 1.6-4 months. CONCLUSION: Post-harvest losses of grain is a significant food security issue for smallholder farmers in Myanmar. Community rodent management and better rodent-proofing of granaries are recommended to reduce losses caused by rodents. © 2016 Society of Chemical Industry.


Assuntos
Grão Comestível , Oryza , Roedores , Agricultura , Animais , Mianmar
19.
Integr Zool ; 12(6): 438-445, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27992109

RESUMO

Rodents are globally important pre-harvest pests of rice. In Southeast Asia, rodent damage to growing rice crops is commonly concentrated towards the center of rice fields, away from the field edge, resulting in a clear pattern known as the "stadium effect." To further understand this behavior of rodent pests and to develop recommendations for future research and management, we examined the relation between giving-up densities (GUDs) and damage patterns. In Tanay, Luzon, Philippines, GUD trays containing pieces of coconut in a matrix of sand were placed at 4 different distances from the field edge to quantify the perceived risk of predation in a rice field pest, Rattus tanezumi. GUDs were recorded during a dry and wet season crop at the reproductive and ripening stages of rice. In addition, assessments of active burrows, tracking tile activity and rodent damage to the rice crop, were conducted in the dry season. GUDs were significantly lower in the center of the rice fields than on the field edges, suggesting that rodent damage to rice is greater in the middle of rice fields due to a lower perceived predation risk. Furthermore, this perception of predation risk (or fear) increases towards the field edge and was greatest on the rice bund, where there was no vegetation cover. We discuss the implications for rodent management and rodent damage assessments in rice fields. This is the first documented use of GUDs in a rice agro-ecosystem in Asia; thus we identify the challenges and lessons learned through this process.


Assuntos
Agricultura , Comportamento Animal , Oryza , Roedores , Animais , Controle de Pragas , Densidade Demográfica
20.
Pest Manag Sci ; 72(6): 1168-77, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26271625

RESUMO

BACKGROUND: Little is known about native and non-native rodent species interactions in complex tropical agroecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat, and assessed over 6 months the response of R. tanezumi and other rodent species. RESULTS: Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas R. everetti selected microhabitat with a dense canopy. CONCLUSION: Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, while the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control. © 2015 Society of Chemical Industry.


Assuntos
Agricultura Florestal , Espécies Introduzidas , Controle Biológico de Vetores/métodos , Ratos , Controle de Roedores/métodos , Animais , Proteção de Cultivos/métodos , Ecossistema , Feminino , Agricultura Florestal/métodos , Masculino , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...