Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 17: 1350716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828281

RESUMO

The prefrontal cortex (PFC) is a key neural node mediating behavioral responses to stress and the actions of ketamine, a fast-acting antidepressant. The molecular mechanisms underlying these processes, however, are not fully understood. Our recent study revealed a pivotal role of hippocampal Ahnak as a regulator of cellular and behavioral adaptations to chronic stress. However, despite its significant expression in the PFC, the contribution of cortical Ahnak to behavioral responses to stress and antidepressants remains unknown. Here, using a mouse model for chronic social stress, we find that Ahnak expression in the PFC is significantly increased in stress-resilient mice and positively correlated with social interaction after stress exposure. Conditional deletion of Ahnak in the PFC or forebrain glutamatergic neurons facilitates stress susceptibility, suggesting that Ahnak is required for behavioral resilience. Further supporting this notion, Ahnak expression in the PFC is increased after the administration of ketamine or its metabolite (2R, 6R)-hydroxynorketamine (HNK). Moreover, Ahnak deletion in forebrain glutamatergic neurons blocks the restorative behavioral effects of ketamine or HNK in stress-susceptible mice. This forebrain excitatory neuron-specific Ahnak deletion reduces the frequency of mini excitatory postsynaptic currents in layer II/III pyramidal neurons, suggesting that Ahnak may induce its behavioral effects via modulation of glutamatergic transmission in the PFC. Altogether, these data suggest that Ahnak in glutamatergic PFC neurons may be critical for behavioral resilience and antidepressant actions of ketamine or HNK in chronic social stress-exposed mice.

2.
Mol Neurodegener ; 19(1): 51, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915105

RESUMO

BACKGROUND: Tau is aberrantly acetylated in various neurodegenerative conditions, including Alzheimer's disease, frontotemporal lobar degeneration (FTLD), and traumatic brain injury (TBI). Previously, we reported that reducing acetylated tau by pharmacologically inhibiting p300-mediated tau acetylation at lysine 174 reduces tau pathology and improves cognitive function in animal models. METHODS: We investigated the therapeutic efficacy of two different antibodies that specifically target acetylated lysine 174 on tau (ac-tauK174). We treated PS19 mice, which harbor the P301S tauopathy mutation that causes FTLD, with anti-ac-tauK174 and measured effects on tau pathology, neurodegeneration, and neurobehavioral outcomes. Furthermore, PS19 mice received treatment post-TBI to evaluate the ability of the immunotherapy to prevent TBI-induced exacerbation of tauopathy phenotypes. Ac-tauK174 measurements in human plasma following TBI were also collected to establish a link between trauma and acetylated tau levels, and single nuclei RNA-sequencing of post-TBI brain tissues from treated mice provided insights into the molecular mechanisms underlying the observed treatment effects. RESULTS: Anti-ac-tauK174 treatment mitigates neurobehavioral impairment and reduces tau pathology in PS19 mice. Ac-tauK174 increases significantly in human plasma 24 h after TBI, and anti-ac-tauK174 treatment of PS19 mice blocked TBI-induced neurodegeneration and preserved memory functions. Anti-ac-tauK174 treatment rescues alterations of microglial and oligodendrocyte transcriptomic states following TBI in PS19 mice. CONCLUSIONS: The ability of anti-ac-tauK174 treatment to rescue neurobehavioral impairment, reduce tau pathology, and rescue glial responses demonstrates that targeting tau acetylation at K174 is a promising neuroprotective therapeutic approach to human tauopathies resulting from TBI or genetic disease.


Assuntos
Tauopatias , Proteínas tau , Animais , Tauopatias/metabolismo , Proteínas tau/metabolismo , Camundongos , Acetilação , Humanos , Imunoterapia/métodos , Modelos Animais de Doenças , Camundongos Transgênicos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Fármacos Neuroprotetores/farmacologia
3.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712164

RESUMO

The Christchurch mutation (R136S) on the APOE3 (E3S/S) gene is associated with low tau pathology and slowdown of cognitive decline despite the causal PSEN1 mutation and high levels of amyloid beta pathology in the carrier1. However, the molecular effects enabling E3S/S mutation to confer protection remain unclear. Here, we replaced mouse Apoe with wild-type human E3 or E3S/S on a tauopathy background. The R136S mutation markedly mitigated tau load and protected against tau-induced synaptic loss, myelin loss, and spatial learning. Additionally, the R136S mutation reduced microglial interferon response to tau pathology both in vivo and in vitro, suppressing cGAS-STING activation. Treating tauopathy mice carrying wild-type E3 with cGAS inhibitor protected against tau-induced synaptic loss and induced similar transcriptomic alterations to those induced by the R136S mutation across brain cell types. Thus, cGAS-STING-IFN inhibition recapitulates the protective effects of R136S against tauopathy.

4.
Brain ; 147(7): 2384-2399, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38462574

RESUMO

Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology. We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease. The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Neurônios , Proto-Oncogene Mas , Proteínas tau , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Neurônios/metabolismo , Proteínas tau/metabolismo , Camundongos , Córtex Entorrinal/metabolismo , Córtex Entorrinal/patologia , Humanos , Camundongos Transgênicos
5.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328219

RESUMO

The strongest risk factors for Alzheimer's disease (AD) include the χ4 allele of apolipoprotein E (APOE), the R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), and female sex. Here, we combine APOE4 and TREM2R47H ( R47H ) in female P301S tauopathy mice to identify the pathways activated when AD risk is the strongest, thereby highlighting disease-causing mechanisms. We find that the R47H variant induces neurodegeneration in female APOE4 mice without impacting hippocampal tau load. The combination of APOE4 and R47H amplified tauopathy-induced cell-autonomous microglial cGAS-STING signaling and type-I interferon response, and interferon signaling converged across glial cell types in the hippocampus. APOE4-R47H microglia displayed cGAS- and BAX-dependent upregulation of senescence, showing association between neurotoxic signatures and implicating mitochondrial permeabilization in pathogenesis. By uncovering pathways enhanced by the strongest AD risk factors, our study points to cGAS-STING signaling and associated microglial senescence as potential drivers of AD risk.

6.
ACS Chem Biol ; 19(1): 37-47, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079390

RESUMO

Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the accumulation of ß-amyloid (Aß), C99, and Tau in vulnerable areas of the brain. Despite extensive research, current strategies to lower Aß levels have shown limited efficacy in slowing the cognitive decline associated with AD. Recent findings suggest that C99 may also play a crucial role in the pathogenesis of AD. Our laboratory has discovered that CK1γ2 phosphorylates Presenilin 1 at the γ-secretase complex, leading to decreased C99 and Aß levels. Thus, CK1γ2 activation appears as a promising therapeutic target to lower both C99 and Aß levels. In this study, we demonstrate that CK1γ2 is inhibited by intramolecular autophosphorylation and describe a high-throughput screen designed to identify inhibitors of CK1γ2 autophosphorylation. We hypothesize that these inhibitors could lead to CK1γ2 activation and increased PS1-Ser367 phosphorylation, ultimately reducing C99 and Aß levels. Using cultured cells, we investigated the impact of these compounds on C99 and Aß concentrations and confirmed that CK1γ2 activation effectively reduced their levels. Our results provide proof of concept that CK1γ2 is an attractive therapeutic target for AD. Future studies should focus on the identification of specific compounds that can inhibit CK1γ2 autophosphorylation and evaluate their efficacy in preclinical models of AD. These studies will pave the way for the development of novel therapeutics for the treatment of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo
7.
Mol Neurodegener ; 18(1): 79, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37941028

RESUMO

DNA sensing is a pivotal component of the innate immune system that is responsible for detecting mislocalized DNA and triggering downstream inflammatory pathways. Among the DNA sensors, cyclic GMP-AMP synthase (cGAS) is a primary player in detecting cytosolic DNA, including foreign DNA from pathogens and self-DNA released during cellular damage, culminating in a type I interferon (IFN-I) response through stimulator of interferon genes (STING) activation. IFN-I cytokines are essential in mediating neuroinflammation, which is widely observed in CNS injury, neurodegeneration, and aging, suggesting an upstream role for the cGAS DNA sensing pathway. In this review, we summarize the latest developments on the cGAS-STING DNA-driven immune response in various neurological diseases and conditions. Our review covers the current understanding of the molecular mechanisms of cGAS activation and highlights cGAS-STING signaling in various cell types of central and peripheral nervous systems, such as resident brain immune cells, neurons, and glial cells. We then discuss the role of cGAS-STING signaling in different neurodegenerative conditions, including tauopathies, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as aging and senescence. Finally, we lay out the current advancements in research and development of cGAS inhibitors and assess the prospects of targeting cGAS and STING as therapeutic strategies for a wide spectrum of neurological diseases.


Assuntos
Interferon Tipo I , Doenças do Sistema Nervoso , Humanos , Transdução de Sinais/fisiologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo
8.
Nat Neurosci ; 26(5): 737-750, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095396

RESUMO

Pathological hallmarks of Alzheimer's disease (AD) precede clinical symptoms by years, indicating a period of cognitive resilience before the onset of dementia. Here, we report that activation of cyclic GMP-AMP synthase (cGAS) diminishes cognitive resilience by decreasing the neuronal transcriptional network of myocyte enhancer factor 2c (MEF2C) through type I interferon (IFN-I) signaling. Pathogenic tau activates cGAS and IFN-I responses in microglia, in part mediated by cytosolic leakage of mitochondrial DNA. Genetic ablation of Cgas in mice with tauopathy diminished the microglial IFN-I response, preserved synapse integrity and plasticity and protected against cognitive impairment without affecting the pathogenic tau load. cGAS ablation increased, while activation of IFN-I decreased, the neuronal MEF2C expression network linked to cognitive resilience in AD. Pharmacological inhibition of cGAS in mice with tauopathy enhanced the neuronal MEF2C transcriptional network and restored synaptic integrity, plasticity and memory, supporting the therapeutic potential of targeting the cGAS-IFN-MEF2C axis to improve resilience against AD-related pathological insults.


Assuntos
Microglia , Nucleotidiltransferases , Proteínas tau , Animais , Camundongos , Cognição , Imunidade Inata , Interferons , Fatores de Transcrição MEF2/genética , Microglia/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
9.
Oncogene ; 42(14): 1132-1143, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813855

RESUMO

Mixed Lineage Kinase 3 (MLK3) is a viable target for neoplastic diseases; however, it is unclear whether its activators or inhibitors can act as anti-neoplastic agents. We reported that the MLK3 kinase activity was higher in triple-negative (TNBC) than in hormone receptor-positive human breast tumors, where estrogen inhibited MLK3 kinase activity and provided a survival advantage to ER+ breast cancer cells. Herein, we show that in TNBC, the higher MLK3 kinase activity paradoxically promotes cancer cell survival. Knockdown of MLK3 or MLK3 inhibitors, CEP-1347 and URMC-099, attenuated tumorigenesis of TNBC cell line and Patient-Derived (PDX) xenografts. The MLK3 kinase inhibitors decreased both the expression and activation of MLK3, PAK1, and NF-kB protein and caused cell death in TNBC breast xenografts. RNA-seq analysis identified several genes downregulated by MLK3 inhibition, and the NGF/TrkA MAPK pathway was significantly enriched in tumors sensitive to growth inhibition by MLK3 inhibitors. The TNBC cell line unresponsive to kinase inhibitor had substantially lower TrkA, and overexpression of TrkA restored the sensitivity to MLK3 inhibition. These results suggest that the functions of MLK3 in breast cancer cells depend on downstream targets in TNBC tumors expressing TrkA, and MLK3 kinase inhibition may provide a novel targeted therapy.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , MAP Quinase Quinase Quinases/metabolismo , Estrogênios , Receptores Proteína Tirosina Quinases , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
10.
Sci Transl Med ; 13(622): eabe3947, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34851693

RESUMO

The hemizygous R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), a microglia-specific gene in the brain, increases risk for late-onset Alzheimer's disease (AD). Using transcriptomic analysis of single nuclei from brain tissues of patients with AD carrying the R47H mutation or the common variant (CV)­TREM2, we found that R47H-associated microglial subpopulations had enhanced inflammatory signatures reminiscent of previously identified disease-associated microglia (DAM) and hyperactivation of AKT, one of the signaling pathways downstream of TREM2. We established a tauopathy mouse model with heterozygous knock-in of the human TREM2 with the R47H mutation or CV and found that R47H induced and exacerbated TAU-mediated spatial memory deficits in female mice. Single-cell transcriptomic analysis of microglia from these mice also revealed transcriptomic changes induced by R47H that had substantial overlaps with R47H microglia in human AD brains, including robust increases in proinflammatory cytokines, activation of AKT signaling, and elevation of a subset of DAM signatures. Pharmacological AKT inhibition with MK-2206 largely reversed the enhanced inflammatory signatures in primary R47H microglia treated with TAU fibrils. In R47H heterozygous tauopathy mice, MK-2206 treatment abolished a tauopathy-dependent microglial subcluster and rescued tauopathy-induced synapse loss. By uncovering disease-enhancing mechanisms of the R47H mutation conserved in human and mouse, our study supports inhibitors of AKT signaling as a microglial modulating strategy to treat AD.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Imunológicos/metabolismo
11.
Oncogene ; 40(43): 6153-6165, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34511598

RESUMO

MAP4K4 is a Ste20 member and reported to play important roles in various pathologies, including in cancer. However, the mechanism by which MAP4K4 promotes pancreatic cancer is not fully understood. It is suggested that MAP4K4 might function as a cancer promoter via specific downstream target(s) in an organ-specific manner. Here we identified MLK3 as a direct downstream target of MAP4K4. The MAP4K4 and MLK3 associates with each other, and MAP4K4 phosphorylates MLK3 on Thr738 and increases MLK3 kinase activity and downstream signaling. The phosphorylation of MLK3 by MAP4K4 promotes pancreatic cancer cell proliferation, migration, and colony formation. Moreover, MAP4K4 is overexpressed in human pancreatic tumors and directly correlates with the disease progression. The MAP4K4-specific pharmacological inhibitor, GNE-495, impedes pancreatic cancer cell growth, migration, induces cell death, and arrests cell cycle progression. Additionally, the GNE-495 reduced the tumor burden and extended survival of the KPC mice with pancreatic cancer. The MAP4K4 inhibitor also reduced MAP4K4 protein expression, tumor stroma, and induced cell death in murine pancreatic tumors. These findings collectively suggest that MLK3 phosphorylation by MAP4K4 promotes pancreatic cancer, and therefore therapies targeting MAP4K4 might alleviate the pancreatic cancer tumor burden in patients.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Camundongos , Transplante de Neoplasias , Neoplasias Pancreáticas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/química , Treonina/química , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
12.
Cancer Lett ; 515: 1-13, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052323

RESUMO

The transcription factor Glioma-Associated Oncogene Homolog 1 (GLI1) is activated by sonic hedgehog (SHH) cascade and is an established driver of pancreatic ductal adenocarcinoma (PDAC). However, therapies targeting upstream hedgehog signaling have shown little to no efficacy in clinical trials. Here, we identify Mixed Lineage Kinase 3 (MLK3) as a druggable regulator of oncogenic GLI1. Earlier, we reported that MLK3 phosphorylated a peptidyl-prolyl isomerase PIN1 on the S138 site, and the PIN1-pS138 translocated to the nucleus. In this report, we identify GLI1 as one of the targets of PIN1-pS138 and demonstrate that PIN1-pS138 is upregulated in human PDAC and strongly associates with the upregulation of GLI1 and MLK3 expression. Moreover, we also identified two new phosphorylation sites on GLI1, T394, and S1089, which are directly phosphorylated by MLK3 to promote GLI1 nuclear translocation, transcriptional activity, and cell proliferation. Additionally, pharmacological inhibition of MLK3 by CEP-1347 promoted apoptosis in PDAC cell lines, reduced tumor burden, extended survival, and reduced GLI1 expression in the Pdx1-Cre x LSL-KRASG12D x LSL-TP53R172H (KPC) mouse model of PDAC. These findings collectively suggest that MLK3 is an important regulator of oncogenic GLI1 and that therapies targeting MLK3 warrant consideration in the management of PDAC patients.


Assuntos
MAP Quinase Quinase Quinases/genética , Peptidilprolil Isomerase de Interação com NIMA/genética , Neoplasias Pancreáticas/genética , Proteína GLI1 em Dedos de Zinco/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Fosforilação/genética , Transdução de Sinais/genética , Transcrição Gênica/genética , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
13.
ACS Med Chem Lett ; 11(10): 1973-1979, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062181

RESUMO

Tafamidis, 1, a potent transthyretin kinetic stabilizer, weakly inhibits the γ-secretase enzyme in vitro. We have synthesized four amide derivatives of 1. These compounds reduce production of the Aß peptide in N2a695 cells but do not inhibit the γ-secretase enzyme in cell-free assays. By performing fluorescence correlation spectroscopy, we have shown that TTR inhibits Aß oligomerization and that addition of tafamidis or its amide derivative does not affect TTR's ability to inhibit Aß oligomerization. The piperazine amide derivative of tafamidis (1a) efficiently penetrates and accumulates in mouse brain and undergoes proteolysis under physiological conditions in mice to produce tafamidis.

14.
ACS Chem Neurosci ; 11(18): 2827-2835, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32786303

RESUMO

Amyloid-beta peptides generated by ß-secretase- and γ-secretase-mediated successive cleavage of amyloid precursor protein are believed to play a causative role in Alzheimer's disease. Thus, reducing amyloid-beta generation by modulating γ-secretase remains a promising approach for Alzheimer's disease therapeutic development. Here, we screened fruit extracts of Ligustrum lucidum Ait. (Oleaceae) and identified active fractions that increase the C-terminal fragment of amyloid precursor protein and reduce amyloid-beta production in a neuronal cell line. These fractions contain a mixture of two isomeric pentacyclic triterpene natural products, 3-O-cis- or 3-O-trans-p-coumaroyl maslinic acid (OCMA), in different ratios. We further demonstrated that trans-OCMA specifically inhibits γ-secretase and decreases amyloid-beta levels without influencing cleavage of Notch. By using photoactivatable probes targeting the subsites residing in the γ-secretase active site, we demonstrated that trans-OCMA selectively affects the S1 subsite of the active site in this protease. Treatment of Alzheimer's disease transgenic model mice with trans-OCMA or an analogous carbamate derivative of a related pentacyclic triterpene natural product, oleanolic acid, rescued the impairment of synaptic plasticity. This work indicates that the naturally occurring compound trans-OCMA and its analogues could become a promising class of small molecules for Alzheimer's disease treatment.


Assuntos
Doença de Alzheimer , Ligustrum , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Camundongos , Triterpenos Pentacíclicos
15.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32759234

RESUMO

BACKGROUND: The mitogen-activated protein kinases (MAPKs) are important for T cell survival and their effector function. Mixed lineage kinase 3 (MLK3) (MAP3K11) is an upstream regulator of MAP kinases and emerging as a potential candidate for targeted cancer therapy; yet, its role in T cell survival and effector function is not known. METHODS: T cell phenotypes, apoptosis and intracellular cytokine expressions were analyzed by flow cytometry. The apoptosis-associated gene expressions in CD8+CD38+ T cells were measured using RT2 PCR array. In vivo effect of combined blockade of MLK3 and CD70 was analyzed in 4T1 tumor model in immunocompetent mice. The serum level of tumor necrosis factor-α (TNFα) was quantified by enzyme-linked immunosorbent assay. RESULTS: We report that genetic loss or pharmacological inhibition of MLK3 induces CD70-TNFα-TNFRSF1a axis-mediated apoptosis in CD8+ T cells. The genetic loss of MLK3 decreases CD8+ T cell population, whereas CD4+ T cells are partially increased under basal condition. Moreover, the loss of MLK3 induces CD70-mediated apoptosis in CD8+ T cells but not in CD4+ T cells. Among the activated CD8+ T cell phenotypes, CD8+CD38+ T cell population shows more than five fold increase in apoptosis due to loss of MLK3, and the expression of TNFRSF1a is significantly higher in CD8+CD38+ T cells. In addition, we observed that CD70 is an upstream regulator of TNFα-TNFRSF1a axis and necessary for induction of apoptosis in CD8+ T cells. Importantly, blockade of CD70 attenuates apoptosis and enhances effector function of CD8+ T cells from MLK3-/- mice. In immune-competent breast cancer mouse model, pharmacological inhibition of MLK3 along with CD70 increased tumor infiltration of cytotoxic CD8+ T cells, leading to reduction in tumor burden largely via mitochondrial apoptosis. CONCLUSION: Together, these results demonstrate that MLK3 plays an important role in CD8+ T cell survival and effector function and MLK3-CD70 axis could serve as a potential target in cancer.


Assuntos
Ligante CD27/metabolismo , Linfócitos T CD8-Positivos/imunologia , MAP Quinase Quinase Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Longevidade , Camundongos , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
16.
Biol Psychiatry ; 88(5): 405-414, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331822

RESUMO

BACKGROUND: Parvalbumin (PV)-expressing interneurons are important for cognitive and emotional behaviors. These neurons express high levels of p11, a protein associated with depression and action of antidepressants. METHODS: We characterized the behavioral response to subthreshold stress in mice with conditional deletion of p11 in PV cells. Using chemogenetics, viral-mediated gene delivery, and a specific ion channel agonist, we studied the role of dentate gyrus PV cells in regulating anxiety-like behavior and resilience to stress. We used electrophysiology, imaging, and biochemical studies in mice and cells to elucidate the function and mechanism of p11 in dentate gyrus PV cells. RESULTS: p11 regulates the subcellular localization and cellular level of the potassium channel Kv3.1 in cells. Deletion of p11 from PV cells resulted in reduced hippocampal level of Kv3.1, attenuated capacity of high-frequency firing in dentate gyrus PV cells, and altered short-term plasticity at synapses on granule cells, as well as anxiety-like behavior and a pattern separation deficit. Chemogenetic inhibition or deletion of p11 in these cells induced vulnerability to depressive behavior, whereas upregulation of Kv3.1 in dentate gyrus PV cells or acute activation of Kv3.1 using a specific agonist induced resilience to depression. CONCLUSIONS: The activity of dentate gyrus PV cells plays a major role in the behavioral response to novelty and stress. Activation of the Kv3.1 channel in dentate gyrus PV cells may represent a target for the development of cell-type specific, fast-acting antidepressants.


Assuntos
Depressão , Parvalbuminas , Animais , Giro Denteado/metabolismo , Interneurônios/metabolismo , Camundongos , Neurônios/metabolismo , Parvalbuminas/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(14): 7961-7970, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209667

RESUMO

Mixed lineage kinase 3 (MLK3), also known as MAP3K11, was initially identified in a megakaryocytic cell line and is an emerging therapeutic target in cancer, yet its role in immune cells is not known. Here, we report that loss or pharmacological inhibition of MLK3 promotes activation and cytotoxicity of T cells. MLK3 is abundantly expressed in T cells, and its loss alters serum chemokines, cytokines, and CD28 protein expression on T cells and its subsets. MLK3 loss or pharmacological inhibition induces activation of T cells in in vitro, ex vivo, and in vivo conditions, irrespective of T cell activating agents. Conversely, overexpression of MLK3 decreases T cell activation. Mechanistically, loss or inhibition of MLK3 down-regulates expression of a prolyl-isomerase, Ppia, which is directly phosphorylated by MLK3 to increase its isomerase activity. Moreover, MLK3 also phosphorylates nuclear factor of activated T cells 1 (NFATc1) and regulates its nuclear translocation via interaction with Ppia, and this regulates T cell effector function. In an immune-competent mouse model of breast cancer, MLK3 inhibitor increases Granzyme B-positive CD8+ T cells and decreases MLK3 and Ppia gene expression in tumor-infiltrating T cells. Likewise, the MLK3 inhibitor in pan T cells, isolated from breast cancer patients, also increases cytotoxic CD8+ T cells. These results collectively demonstrate that MLK3 plays an important role in T cell biology, and targeting MLK3 could serve as a potential therapeutic intervention via increasing T cell cytotoxicity in cancer.


Assuntos
Neoplasias da Mama/imunologia , Linfócitos do Interstício Tumoral/imunologia , MAP Quinase Quinase Quinases/metabolismo , Neoplasias Mamárias Experimentais/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/transplante , Ciclofilina A/metabolismo , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/genética , Neoplasias Mamárias Experimentais/sangue , Neoplasias Mamárias Experimentais/patologia , Camundongos , Fatores de Transcrição NFATC/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/metabolismo , Evasão Tumoral/efeitos dos fármacos , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
18.
ACS Med Chem Lett ; 10(10): 1430-1435, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620229

RESUMO

Compound 3a, DV2-103, is a kinase inactive analogue of a potent Abl1/Src kinase inhibitor, PD173955, 2. Both compounds, 2 and 3a, are known to reduce production of beta amyloid (Aß) peptide in cells and animal models. We have now prepared and evaluated a series of PD-173955 analogues, several of which reduced Aß production potently. This occurs in cells expressing human full-length amyloid precursor protein (APP) and not in cells expressing APP ß-C terminal fragment (APP-C99), suggesting that the kinase inactive analogues strongly affect ß-secretase (BACE1) cleavage of APP, similarly to Gleevec. A combination of the kinase inactive analogues of PD173955 with a BACE1 inhibitor (BACEi), namely, BACE IV, strongly reduced Aß levels in cells, as noted previously with Gleevec and analogues. Several potent compounds also penetrated and accumulated in mouse brain in high nanomolar to low micromolar concentration.

19.
J Med Chem ; 62(6): 3122-3134, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30873837

RESUMO

Imatinib mesylate, 1a, inhibits production of ß-amyloid (Aß) peptides both in cells and in animal models. It reduces both the ß-secretase and γ-secretase cleavages of the amyloid precursor protein (APP) and mediates a synergistic effect, when combined with a ß-secretase inhibitor, BACE IV. Toward developing more potent brain-permeable leads, we have synthesized and evaluated over 75 1a-analogues. Several compounds, including 2a-b and 3a-c, inhibited production of Aß peptides with improved activity in cells. These compounds affected ß-secretase cleavage of APP similarly to 1a. Compound 2a significantly reduced production of the Aß42 peptide, when administered (100 mg/kg, twice daily by oral gavage) to 5 months old female mice for 5 days. A combination of compound 2a with BACE IV also reduced Aß levels in cells, more than the additive effect of the two compounds. These results open a new avenue for developing treatments for Alzheimer's disease using 1a-analogues.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/química , Antineoplásicos/farmacologia , Mesilato de Imatinib/análogos & derivados , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Desenvolvimento de Medicamentos , Feminino , Humanos , Mesilato de Imatinib/farmacologia , Camundongos , Camundongos Transgênicos , Relação Estrutura-Atividade
20.
Proc Natl Acad Sci U S A ; 114(27): 7142-7147, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28533411

RESUMO

Alzheimer's disease (AD) is characterized by accumulation of the ß-amyloid peptide (Aß), which is generated through sequential proteolysis of the amyloid precursor protein (APP), first by the action of ß-secretase, generating the ß-C-terminal fragment (ßCTF), and then by the Presenilin 1 (PS1) enzyme in the γ-secretase complex, generating Aß. γ-Secretase is an intramembranous protein complex composed of Aph1, Pen2, Nicastrin, and Presenilin 1. Although it has a central role in the pathogenesis of AD, knowledge of the mechanisms that regulate PS1 function is limited. Here, we show that phosphorylation of PS1 at Ser367 does not affect γ-secretase activity, but has a dramatic effect on Aß levels in vivo. We identified CK1γ2 as the endogenous kinase responsible for the phosphorylation of PS1 at Ser367. Inhibition of CK1γ leads to a decrease in PS1 Ser367 phosphorylation and an increase in Aß levels in cultured cells. Transgenic mice in which Ser367 of PS1 was mutated to Ala, show dramatic increases in Aß peptide and in ßCTF levels in vivo. Finally, we show that this mutation impairs the autophagic degradation of ßCTF, resulting in its accumulation and increased levels of Aß peptide and plaque load in the brain. Our results demonstrate that PS1 regulates Aß levels by a unique bifunctional mechanism. In addition to its known role as the catalytic subunit of the γ-secretase complex, selective phosphorylation of PS1 on Ser367 also decreases Aß levels by increasing ßCTF degradation through autophagy. Elucidation of the mechanism by which PS1 regulates ßCTF degradation may aid in the development of potential therapies for Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Autofagia , Encéfalo/metabolismo , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fosforilação , Presenilina-1/metabolismo , Domínios Proteicos , Serina/química , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...