Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346519

RESUMO

The wide use of the fluoroquinolone antibiotic ciprofloxacin (CIP), combined with its limited removal in wastewater treatment plants, results in a dangerous accumulation in natural water. Here, the complete degradation of CIP by photoelectrocatalysis (PEC), using an FTO/ZnO/TiO2/Ag2Se photoanode that is responsive to blue light, has been investigated. A slow antibiotic concentration decay was found in 0.050 M Na2SO4 under the oxidizing action of holes and OH photogenerated at the anode surface. The degradation was strongly enhanced in 0.070 M NaCl due to mediated oxidation by electrogenerated active chlorine. The latter process became faster at pH 7.0, with total abatement of CIP at concentrations below 2.5 mg L-1 operating at a bias potential of +0.8 V. The performance was enhanced when increasing the anodic potential and decreasing the initial drug content. The use of solar radiation from a simulator was also beneficial, owing to the greater lamp power. In contrast, the electrochemical oxidation in the dark yielded a poor removal, thus confirming the critical role of oxidants formed under light irradiation. The generation of holes and OH was confirmed from tests with specific scavengers like ammonium oxalate and tert-butanol, respectively. The prolonged usage of the photoanode affected its performance due to poisoning of its active centers by degradation by-products, although a good PEC reproducibility was obtained upon surface cleaning.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Antibacterianos/química , Água , Reprodutibilidade dos Testes , Luz , Poluentes Químicos da Água/análise , Eletrodos , Oxirredução
2.
Sci Total Environ ; 912: 169143, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070549

RESUMO

The decolorization and TOC removal of solutions of Acid Brown 14 (AB14) diazo dye containing 50 mg L-1 of total organic carbon (TOC) have been first studied in a continuous-flow electrocoagulation (EC) reactor of 3 L capacity with Fe electrodes of ∼110 cm2 area each. Total loss of color with poor TOC removal was found in chloride, sulfate, and/or hydrogen carbonate matrices after 18 min of this treatment. The best performance was found using 5 anodes and 4 cathodes of Fe at 13.70 A and low liquid flow rate of 10 L h-1, in aerated 39.6 mM NaCl medium within a pH range of 4.0-10.0. The effluent obtained from EC was further treated by electro-Fenton (EF) using a 2.5 L pre-pilot flow plant, which was equipped with a filter-press cell comprising a Pt anode and an air-diffusion cathode for H2O2 electrogeneration. Operating with 0.10-1.0 mM Fe2+ as catalyst at pH 3.0 and 50 mA cm-2, a similar TOC removal of 68 % was found as maximal in chloride and sulfate media using the sequential EC-EF process. The EC-treated solutions were also treated by photoelectro-Fenton (PEF) employing a photoreactor with a 125 W UVA lamp. The sequential EC-PEF process yielded a much higher TOC reduction, close to 90 % and 97 % in chloride and sulfate media, respectively, due to the rapid photolysis of the final Fe(III)-carboxylate complexes. The formation of recalcitrant chloroderivatives from generated active chlorine limited the mineralization in the chloride matrix. For practical applications of this two-step technology, the high energy consumption of the UVA lamp in PEF could be reduced by using free sunlight.

3.
Sci Total Environ ; 882: 163596, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084916

RESUMO

Hydroxyl radical (OH) is considered the dominant reactive species in the electro-Fenton (EF) and Fered-Fenton (EF-Fere) processes for wastewater treatment. However, in chloride-rich media, this is arguable due to the obscure mechanisms for the oxidant speciation and pollutant degradation. Herein, the role of active chlorine and Fe(IV)-oxo species (FeIVO2+) as primary oxidizing agents in HClO-mediated Fered-Fenton (EF-Fere-HClO) process is discussed, along with the dependence of their contribution on the pollutant structure. HClO generated from anodic oxidation of Cl- can be consumed by added H2O2 to form singlet oxygen (1O2), which is detrimental because this species is quickly deactivated by water. The reaction between HClO and Fe2+ was proved to generate FeIVO2+, rather than OH or Cl suggested in the literature. The yield of FeIVO2+ species was proportional to the Cl- concentration and barely affected by solution pH. The long-lived HClO and FeIVO2+ can selectively react with electron-rich compounds, which occurs simultaneously to the non-selective attack of OH formed from Fenton's reaction. The FeIVO2+ and OH concentration profiles were successfully modelled. Although the accumulation of toxic chlorinated by-products from HClO-mediated oxidation might cause new environmental concerns, the toxicity of pesticide wastewater with 508 mM Cl- was halved upon EF-Fere-HClO treatment.

4.
Chem Rev ; 123(8): 4635-4662, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36917618

RESUMO

This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.

5.
Chemosphere ; 313: 137393, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36442679

RESUMO

Water treatment and reuse is gaining acceptance as a strategy to fight against water contamination and scarcity, but it usually requires complex treatments to ensure safety. Consequently, the electrochemical advanced processes have emerged as an effective alternative for water remediation. The main objective here is to perform a systematic study that quantifies the efficiency of a laboratory-scale electrochemical system to inactivate bacteria, bacterial spores, protozoa, bacteriophages and viruses in synthetic water, as well as in urban wastewater once treated in a wetland for reuse in irrigation. A Ti|RuO2-based plate and Si|BDD thin-film were comparatively employed as the anode, which was combined with a stainless-steel cathode in an undivided cell operating at 12 V. Despite the low resulting current density (<15 mA/cm2), both anodes demonstrated the production of oxidants in wetland effluent water. The disinfection efficiency was high for the bacteriophage MS2 (T99 in less than 7.1 min) and bacteria (T99 in about 30 min as maximum), but limited for CBV5 and TuV, spores and amoebas (T99 in more than 300 min). MS2 presented a rapid exponential inactivation regardless of the anode and bacteria showed similar sigmoidal curves, whereas human viruses, spores and amoebas resulted in linear profiles. Due the different sensitivity of microorganisms, different models must be considered to predict their inactivation kinetics. On this basis, it can be concluded that evaluating the viral inactivation from inactivation profiles determined for bacteria or some bacteriophages may be misleading. Therefore, neither bacteria nor bacteriophages are suitable models for the disinfection of water containing enteric viruses. The electrochemical treatment added as a final disinfection step enhances the inactivation of microorganisms, which could contribute to safe water reuse for irrigation. Considering the calculated low energy consumption, decentralized water treatment units powered by photovoltaic modules might be a near reality.


Assuntos
Desinfecção , Purificação da Água , Humanos , Desinfecção/métodos , Bactérias , Oxirredução , Purificação da Água/métodos , Oxidantes
6.
Chemosphere ; 303(Pt 1): 134948, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35577130

RESUMO

The electrochemical technologies for water treatment have flourished over the last decades. However, it is still challenging to treat the actual complex water effluents by a single electrochemical process, often requiring coupling of technologies. In this study, an upgraded peroxi-coagulation (PC) process with a magnetically assembled mZVI/DSA anode has been devised for the first time. COD, NH3-N and total phosphorous were simultaneously and effectively removed from livestock wastewater. The advantages, influence of key parameters and evolution of electrogenerated species were systematically investigated to fully understand this novel PC process. The fluorescent substances in livestock wastewater could also be almost removed under optimal conditions (300 mA, 0.2 g ZVI particles and pH 6.8). The interaction between OH and active chlorine yielded ClO with a high steady-state concentration of 6.85 × 10-13 M, which did not cause COD removal but accelerated the oxidation of NH3-N. The Mulliken population suggested that OH and NH3-N had similar electron-donor behavior, whereas ClO acted as an electron-withdrawing species. Besides, although the energy barrier for the reaction between OH and NH3-N (17.0 kcal/mol) was lower than that with ClO (18.8 kcal/mol), considering the tunneling in the H abstraction reaction, the Skodje-Truhlar method adopted for calculations evidenced a 17-fold faster NH3-N oxidation rate with ClO. In summary, this work describes an advantageous single electrochemical process for the effective treatment of a complex water matrix.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Eletrodos , Peróxido de Hidrogênio/química , Oxirredução , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
7.
J Hazard Mater ; 423(Pt A): 127005, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34479080

RESUMO

The excessive cost, unsustainability or complex production of new highly selective electrocatalysts for H2O2 production, especially noble-metal-based ones, is prohibitive in the water treatment sector. To solve this conundrum, biomass-derived carbons with adequate textural properties were synthesized via agarose double-step pyrolysis followed by steam activation. A longer steam treatment enhanced the graphitization and porosity, even surpassing commercial carbon black. Steam treatment for 20 min yielded the greatest surface area (1248 m2 g-1), enhanced the mesopore/micropore volume distribution and increased the activity (E1/2 = 0.609 V) and yield of H2O2 (40%) as determined by RRDE. The upgraded textural properties had very positive impact on the ability of the corresponding gas-diffusion electrodes (GDEs) to accumulate H2O2, reaching Faradaic current efficiencies of ~95% at 30 min. Acidic solutions of ß-blocker acebutolol were treated by photoelectro-Fenton (PEF) process in synthetic media with and without chloride. In urban wastewater, total drug disappearance was reached at 60 min with almost 50% mineralization after 360 min at only 10 mA cm-2. Up to 14 degradation products were identified in the Cl--containing medium.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Acebutolol , Cloretos , Eletrodos , Ferro , Oxirredução , Sefarose , Poluentes Químicos da Água/análise
8.
Chemosphere ; 263: 128271, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297215

RESUMO

Model solutions of bisphenol A (BPA) in 0.050 M Na2SO4 at pH 3.0 have been treated by the electro/Fe2+/persulfate process. The activation of 5.0 mM persulfate with 0.20 mM Fe2+ yielded a mixture of sulfate radical anion (SO4-) and OH, although quenching tests revealed the prevalence of the former species as the main oxidizing agent. In trials run in an IrO2/carbon-felt cell, 98.4% degradation was achieved alongside 61.8% mineralization. The energy consumption was 253.9 kWh (kg TOC)-1, becoming more cost-effective as compared to cells with boron-doped diamond and Pt anodes. Carbon felt outperformed stainless steel as cathode because of the faster Fe2+ regeneration. All BPA concentration decays agreed with a pseudo-fist-order kinetics. The effect of persulfate, Fe2+ and BPA concentrations as well as of the applied current on the degradation process was assessed. Two dehydroxylated and three hydroxylated monobenzenic by-products appeared upon SO4- and OH attack, respectively. The analogous treatment of BPA spiked into urban wastewater yielded a faster degradation and mineralization due to the co-generation of HClO and the larger OH production as SO4- reacted with Cl-.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Compostos Benzidrílicos , Eletrodos , Cinética , Oxirredução , Fenóis , Sulfatos
9.
Chemosphere ; 267: 128925, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33213874

RESUMO

The photocatalytic activity of TiO2 anodes was enhanced by synthesizing Ru-doped Ti|TiO2 nanotube arrays. Such photoanodes were fabricated via Ti anodization followed by Ru impregnation and annealing. The X-ray diffractograms revealed that anatase was the main TiO2 phase, while rutile was slightly present in all samples. Scanning electron microscopy evidenced a uniform morphology in all samples, with nanotube diameter ranging from 60 to 120 nm. The bias potential for the photoelectrochemical (PEC) treatment was selected from the electrochemical characterization of each electrode, made via linear sweep voltammetry. All the Ru-doped TiO2 nanotube array photoanodes showed a peak photocurrent (PP) and a saturation photocurrent (SP) upon their illumination with UV or visible light. In contrast, the undoped TiO2 nanotubes only showed the SP, which was higher than that reached with the Ru-doped photoanodes using UV light. An exception was the Ru(0.15 wt%)-doped TiO2, whose SP was comparable under visible light. Using that anode, the activity enhancement during the PEC treatment of a Terasil Blue dye solution at Ebias(PP) was much higher than that attained at Ebias(SP). The percentage of color removal at 120 min with the Ru(0.15 wt%)-doped TiO2 was 98% and 55% in PEC with UV and visible light, respectively, being much greater than 82% and 28% achieved in photocatalysis. The moderate visible-light photoactivity of the Ru-doped TiO2 nanotube arrays suggests their convenience to work under solar PEC conditions, aiming at using a large portion of the solar spectrum.


Assuntos
Dopagem Esportivo , Nanotubos , Rutênio , Catálise , Luz , Titânio , Raios Ultravioleta
10.
Environ Sci Pollut Res Int ; 28(19): 23833-23848, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33175352

RESUMO

One of the main challenges of electrochemical Fenton-based processes is the treatment of organic pollutants at near-neutral pH. As a potential approach to this problem, this work addresses the use of a low content of soluble chelated metal catalyst, formed between Fe(III) and ethylenediamine-N,N'-disuccinic (EDDS) acid (1:1), to degrade the herbicide triclopyr in 0.050 M Na2SO4 solutions at pH 7.0 by photoelectro-Fenton with UVA light or sunlight (PEF and SPEF, respectively). Comparison with electro-Fenton treatments revealed the crucial role of the photo-Fenton-like reaction, since this promoted the production of soluble Fe(II) that enhanced the pesticide removal. Hydroxyl radicals formed at the anode surface and in the bulk were the main oxidants. A boron-doped diamond (BDD) anode yielded a greater mineralization than an IrO2-based one, at the expense of reduced cost-effectiveness. The effect of catalyst concentration and current density on the performance of PEF with BDD was examined. The PEF trials in 0.25 mM Na2SO4 + 0.35 mM NaCl medium showed a large influence of generated active chlorine as oxidant, being IrO2 more suitable than RuO2 and BDD. In SPEF with BDD, the higher light intensity from solar photons accelerated the removal of the catalyst and triclopyr, with small effect on mineralization. A plausible route for the herbicide degradation by Fe(III)-EDDS-catalyzed PEF and SPEF is finally proposed based on detected byproducts: three heteroaromatic and four linear N-aliphatic compounds, formamide, and tartronic and oxamic acids.


Assuntos
Praguicidas , Poluentes Químicos da Água , Eletrodos , Compostos Férricos , Glicolatos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Luz Solar , Raios Ultravioleta
11.
Sci Total Environ ; 747: 141541, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32795810

RESUMO

The development of new or upgraded electrochemical water treatment technologies is considered a topic of great interest. Here, Tartrazine azo dye solutions were treated by means of a quite innovative dual electrochemical persulfate (S2O82-, PS) activation that combines H2O2 generation at an air-diffusion cathode and anodic oxidation (AO) at a boron-doped diamond (BDD) anode using a stirred tank reactor. This so-called AO-H2O2/PS process was compared to AO with stainless steel cathode, both in 50 mM Na2SO4 medium, finding the oxidation power increasing as: AO < AO-H2O2 < AO/PS < AO-H2O2/PS. In the latter, the dye and its products were mainly destroyed by: (i) hydroxyl radicals, formed either from water oxidation at BDD surface or via reaction between H2O2 and S2O82-, and (ii) sulfate radical anion, formed from the latter reaction, thermal PS activation and cathodic S2O82- reduction. Hydroxyl radicals prevailed as oxidizing agents, as deduced from trials with tert-butanol and methanol. The reaction between S2O82- and accumulated H2O2 was favored as temperature increased from 25 to 45 °C. The effect of PS content up to 36 mM, dye concentration within the range 0.22-0.88 mM, current density (j) between 8.3 and 33.3 mA cm-2 and pH between 3.0 and 9.0 on the process performance was examined. All decolorization profiles agreed with a pseudo-first-order kinetics. The best results for treating 0.44 mM dye were attained with 36 mM PS at pH 3.0, j = 16.7 mA cm-2 and 45 °C, yielding total loss of color, 62% TOC removal and 50% mineralization current efficiency after 360 min. The slow mineralization was attributed to the persistence of recalcitrant byproducts like maleic, acetic, oxalic, formic and oxamic acids. It is concluded that the novel AO-H2O2/PS process is more effective than AO/PS to treat Tartrazine solutions, being advisable to extend the study to other organic pollutants.

12.
Water Res ; 184: 115986, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32683142

RESUMO

This work reports the novel application of an Fe-based 2D metal-organic framework (MOF), prepared with 2,2'-bipyridine-5,5'-dicarboxylate (bpydc) as organic linker, as highly active catalyst for heterogeneous photoelectro-Fenton (PEF) treatment of the lipid regulator bezafibrate in a model matrix and urban wastewater. Well-dispersed 2D structures were successfully synthesized and their morphological, physicochemical and photocatalytic properties were assessed. UV/Vis PEF using an IrO2/air-diffusion cell with an extremely low catalyst concentration (0.05 g L-1, tenfold lower than reported 3D MOFs) outperformed electro-oxidation with electrogenerated H2O2, electro-Fenton and visible-light PEF. Its excellent performance was explained by: (i) the enhanced mass transport of H2O2 (and organic molecules) at the 2D structure, providing active sites for heterogeneous Fenton's reaction and in-situ Fe(II) regeneration; (ii) the ability of photoinduced electrons to reduce H2O2 to •OH, and Fe(III) to Fe(II); and (iii) the enhanced charge transfer and excitation of Fe-O clusters, which increased the number of electron-hole pairs. LC-QToF-MS and GC-MS allowed the identification of 16 aromatic products of bezafibrate. The complete removal of four micropollutants mixed in urban wastewater at pH 7.4 revealed the great potential of (Fe-bpydc)-catalyzed PEF process.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Eletrodos , Compostos Férricos , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/análise
13.
Chemosphere ; 259: 127466, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32615456

RESUMO

This work addresses the mineralization of the widely used Methyl Orange (MO) azo dye by technologies based on H2O2 electrogeneration at a 3D-like air-diffusion cathode. These include two Fe2+-catalyzed processes such as electro-Fenton (EF) and photoelectro-Fenton (PEF). Bulk electrolyses were performed in a recirculation flow plant, in which the Eco-Cell filter-press electrochemical reactor was connected in series with a UVA photoreactor. The former reactor was equipped with a Ti|Ir-Sn-Sb oxide plate anode alongside a 3D-like air-diffusion cathode made from graphite felt and hydrophobized carbon cloth, aimed at electrogenerating H2O2 on site. The influence of current density (j), volumetric flow rate (Q) and initial MO concentration was examined. The greatest oxidation power corresponded to PEF process. The best operation conditions to treat 30 mg L-1 of total organic carbon of MO in a 50 mM Na2SO4 solution by PEF were found at 0.50 mM Fe2+, pH 3.0, j = 20 mA cm-2 and Q = 2.0 L min-1, obtaining 100% and 94% of color and TOC removals at 30 and 240-300 min, respectively. This accounted for 35% of mineralization current efficiency and 0.12 kWh (g TOC)-1 of energy consumption at the end of the electrolysis. The oxidation power of EF and PEF was compared with that of anodic oxidation (AO), and the sequence obtained was: PEF > EF > AO. The dye was gradually degraded, yielding non-toxic short carboxylic acids, like maleic, fumaric, formic, oxalic and oxamic, whose Fe(III) complexes were rapidly photolyzed.


Assuntos
Compostos Azo/química , Poluentes Químicos da Água/química , Carbono , Ácidos Carboxílicos , Difusão , Eletrodos , Eletrólise , Compostos Ferrosos , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Fotólise
14.
Sci Total Environ ; 740: 140154, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32563883

RESUMO

The development of heterogeneous Fenton-based electrochemical advanced oxidation processes is important for the removal of organic pollutants at industrial level in the near future. This work reports the application of heterogeneous photoelectro-Fenton (HPEF) with UVA light as an enhanced alternative to the more widespread heterogeneous electro-Fenton (HEF) process. The treatment of the antibiotic cephalexin using chalcopyrite as a sustainable catalyst was studied using an undivided IrO2/air-diffusion cell. XPS analysis showed the presence of Fe(III), Cu(I) and Cu(II) species on the surface. The amount of Fe2+ ions dissolved upon chalcopyrite exposure to continuous stirring and air bubbling was proportional to chalcopyrite content. In all cases, the occurrence of pH self-regulation to an optimum value near 3 was observed. The HEF and HPEF treatments of 100 mL of 50 mg L-1 cephalexin solutions with 0.050 M Na2SO4 have been studied with 1.0 g L-1 chalcopyrite at 50 mA cm-2. Comparative homogeneous EF and PEF with dissolved Fe2+ and Cu2+ catalysts were also performed. HPEF was the most effective process, which can be mainly explained by the larger production of homogeneous and heterogeneous OH and the photodegradation of the complexes formed between iron and organics. The effect of applied current and catalyst concentration on HPEF performance was assessed. Recycling experiments showed a long-term stability of chalcopyrite. Seven initial aromatics and six cyclic by-products of cephalexin were identified, and a plausible degradation route that also includes five final carboxylic acids is proposed.


Assuntos
Cefalexina , Poluentes Químicos da Água/análise , Antibacterianos , Cobre , Técnicas Eletroquímicas , Eletrodos , Compostos Férricos , Peróxido de Hidrogênio , Oxirredução
16.
J Environ Manage ; 270: 110835, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32501237

RESUMO

The degradation of the antibiotic thiamphenicol has been studied by photoelectro-Fenton (PEF) process with UVA light using pyrite particles as catalyst source. Pyrite is a sulfide mineral that naturally acidifies the reaction medium and releases Fe2+, thus promoting the effective generation of OH from Fenton's reaction. The assays were made in an IrO2/air-diffusion cell, which yielded similar results to a boron-doped diamond (BDD)/air-diffusion one at a lower cost. In dark conditions, electro-Fenton (EF) process showed an analogous ability for drug removal, but mineralization was much poorer because of the large persistence of highly stable by-products. Their photolysis explained the higher performance of PEF. Conventional homogeneous PEF directly using dissolved Fe2+ exhibited a lower mineralization power. This suggests the occurrence of heterogeneous Fenton's reaction over the pyrite surface. The effect of current density and drug content on pyrite-catalyzed PEF performance was examined. The drug heteroatoms were gradually converted into SO42-, Cl- and NO3- ions. Nine aromatic derivatives and two dichloroaliphatic amines were identified by GC-MS, and five short-chain carboxylic acids were detected by ion-exclusion HPLC. A reaction route for thiamphenicol mineralization by PEF process with continuous H2O2 and Fe2+ supply on site is proposed.


Assuntos
Tianfenicol , Poluentes Químicos da Água , Catálise , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Ferro , Oxirredução , Sulfetos
17.
Environ Sci Technol ; 54(7): 4664-4674, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32108464

RESUMO

Herein, the novel application of FeS2/C nanocomposite as a highly active, stable, and recyclable catalyst for heterogeneous electro-Fenton (EF) treatment of organic water pollutants is discussed. The simultaneous carbonization and sulfidation of an iron-based metal-organic framework (MOF) yielded well-dispersed pyrite FeS2 nanoparticles of ∼100 nm diameter linked to porous carbon. XPS analysis revealed the presence of doping N atoms. EF treatment with an IrO2/air-diffusion cell ensured the complete removal of the antidepressant fluoxetine spiked into urban wastewater at near-neutral pH after 60 min at 50 mA with 0.4 g L-1 catalyst as optimum dose. The clear enhancement of catalytic activity and stability of the material as compared to natural pyrite was evidenced, as deduced from its characterization before and after use. The final solutions contained <1.5 mg L-1 dissolved iron and became progressively acidified. Fluorescence excitation-emission spectroscopy with parallel factor analysis demonstrated the large mineralization of all wastewater components at 6 h, which was accompanied by a substantial decrease of toxicity. A mechanism with •OH as the dominant oxidant was proposed: FeS2 core-shell nanoparticles served as Fe2+ shuttles for homogeneous Fenton's reaction and provided active sites for the heterogeneous Fenton process, whereas nanoporous carbon allowed minimizing the mass transport limitations.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Águas Residuárias
18.
Chemosphere ; 240: 124838, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31542582

RESUMO

Modified sodium vermiculite, an iron-rich clay mineral, has been used in novel heterogeneous electrochemical Fenton-based treatments, so-called electro-Fenton (EF)-vermiculite, UVA photoelectro-Fenton (PEF)-vermiculite and solar photoelectro-Fenton (SPEF)-vermiculite. Tests were made with 130 mL of 0.150 mM Ponceau SS diazo dye in 0.050 M Na2SO4 at pH 3.0, in the presence of 1.0 g L-1 catalyst microparticles. The electrolyses were performed in an undivided cell with a boron-doped diamond anode (BDD) and air-diffusion cathode for H2O2 production, at 33.3 mA cm-2. Decolorization and mineralization were upgraded in the sequence: EF-vermiculite < PEF-vermiculite < SPEF-vermiculite. The removal of organics occurred by the combined action of OH oxidant formed at the BDD surface and homogeneous and heterogeneous Fenton's reactions, along with the photolysis caused by UVA light or sunlight. The homogeneous Fenton's reaction resulted from iron ions leaching, but the heterogeneous mechanism was prevalent. Comparative treatments by anodic oxidation in the presence of H2O2 and homogeneous EF were less effective than EF-vermiculite. The diazo dye absorbance decays agreed with a pseudo-first-order kinetics. SPEF-vermiculite was the most powerful process, yielding total decolorization and 84.1% mineralization after 300 and 360 min, respectively. The influence of catalyst concentration, current density and diazo dye content on PEF-vermiculite performance was examined. Oxalic, oxamic, malic, tartronic and acetic acids were detected as final short-linear carboxylic acids.


Assuntos
Silicatos de Alumínio/química , Compostos Azo/química , Técnicas Eletroquímicas/métodos , Catálise
19.
Chemosphere ; 246: 125674, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31884228

RESUMO

The corrosion behavior of Ti electrodes and the dependence of their anodic dissolution with the experimental conditions, namely pH, current density (j) and supporting electrolyte nature, have been investigated. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests have been performed. It has been found that pH has a relevant effect on the electrochemical dissolution of Ti. In chloride medium, metal dissolution was partially caused by pitting corrosion and the corrosion potential was shifted to more cathodic values. Conversely, in phosphate medium, corrosion was inhibited by the formation of a compact passive layer of titanium hydroxide/phosphate. Further, the mechanisms of sacrificial Ti anode dissolution during the electrocoagulation process are discussed. The influence of the supporting electrolyte, pH and j on the effectiveness of the electrocoagulation process for humic acid (HA) removal was assessed. Under optimized conditions, total decolorization was achieved in 60 min, eventually attaining 94% total organic carbon (TOC) removal.


Assuntos
Substâncias Húmicas/análise , Titânio/química , Poluentes da Água/análise , Purificação da Água/métodos , Corrosão , Espectroscopia Dielétrica , Eletroquímica/métodos , Eletrocoagulação , Eletrodos , Teste de Materiais , Metais
20.
Chemosphere ; 246: 125697, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31884229

RESUMO

The degradation of Acid Red 1 (AR1) azo dye by solar photoelectro-Fenton-like (SPEF-like) process involving continuously electrogenerated hypochlorous acid (HClO) and photoregenerated Fe(II) to yield hydroxyl radicals, has been studied. The assays were made in a flow plant that included a filter-press cell equipped with a Ti|Ir-Sn-Sb oxide anode, to oxidize Cl- ion to HClO, and a stainless-steel cathode. The cell was coupled to a compound parabolic collector (CPC) photoreactor, in series with a reservoir containing 6 L of solution. The influence of the added Fe2+ concentration, current density and initial AR1 content over the performance of the SPEF-like process was systematically studied. The best treatment for 0.196 mM AR1 solutions in 35 mM NaCl and 25 mM Na2SO4 at pH 3.0 was achieved in the presence of 0.40 mM Fe2+ under a current density of 15 mA cm-2, which yielded total color removal at 120 min and 74% COD decay at 480 min, with 25% of average current efficiency and 0.076 kW h (g COD)-1 of energy consumption. The SPEF-like process was compared with anodic oxidation with electrogenerated active chlorine (AO-HClO), electro Fenton-like (EF-like) and photoelectro-Fenton-like (PEF-like) processes, and it was found that the oxidation power decreased in the sequence: SFEF-like > PEF-like > EF-like > AO-HClO. Ion-exclusion HPLC analysis of electrolyzed solutions revealed the formation of maleic and oxalic acid as final short-chain linear carboxylic acids.


Assuntos
Compostos Azo/química , Rodaminas/química , Poluentes Químicos da Água/química , Técnicas Eletroquímicas , Eletrodos , Compostos Ferrosos/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Oxirredução , Processos Fotoquímicos , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...