RESUMO
Sex as a biological variable has been recognized for decades to be a critical aspect of the drug development process, as differences in drug pharmacology and toxicity in female versus male subjects can drive the success or failure of new therapeutics. These concepts in development of traditional drug systems have only recently begun to be applied for advancing nanomedicine systems that are designed for drug delivery or imaging in the central nervous system (CNS). This review provides a comprehensive overview of the current state of two fields of research - nanomedicine and acute brain injury-centering on sex as a biological variable. We highlight areas of each field that provide foundational understanding of sex as a biological variable in nanomedicine, brain development, immune response, and pathophysiology of traumatic brain injury and stroke. We describe current knowledge on female versus male physiology as well as a growing number of empirical reports that directly address sex as a biological variable in these contexts. In sum, the data make clear two key observations. First, the manner in which sex affects nanomedicine distribution, toxicity, or efficacy is important, complex, and depends on the specific nanoparticle system under considerations; second, although field knowledge is accumulating to enable us to understand sex as a biological variable in the fields of nanomedicine and acute brain injury, there are critical gaps in knowledge that will need to be addressed. We anticipate that understanding sex as a biological variable in the development of nanomedicine systems to treat acute CNS injury will be an important determinant of their success.
RESUMO
Histone deacetylase expression and activity are often dysregulated in central nervous system (CNS) tumors, providing a rationale for investigating histone deacetylase inhibitors (HDACIs) in selected brain tumor patients. Although many HDACIs have shown potential in in vitro studies, they have had modest efficacy in vivo This lack of activity could be due to insufficient CNS exposure to the unbound drug. In this study, we investigated the systemic pharmacokinetics and subsequent CNS distribution of two potent HDACIs, vorinostat and quisinostat, in the murine model. Both compounds undergo in vitro degradation in mouse plasma, requiring precautions during sample processing. They also have short half-lives in vivo, in both plasma and CNS, which may lead to diminished efficacy. Transgenic transporter-deficient mouse models show that the CNS delivery of vorinostat was not limited by the two major blood-brain barrier efflux transporters, p-glycoprotein and breast-cancer-resistance protein. Vorinostat had an unbound CNS tissue-to-plasma partition coefficient of 0.06 {plus minus} 0.02. Conversely, the exposure of unbound quisinostat in the brain was only 0.02 {plus minus} 0.001 of that in the plasma, and the CNS distribution of quisinostat was limited by the activity of p-glycoprotein. To gain further context for these findings, the CNS distributional kinetics for vorinostat and quisinostat were compared to another hydroxamic acid HDACI, panobinostat. A comprehensive understanding of the CNS target exposure to unbound HDACI, along with known potencies from in vitro testing, can inform the prediction of a therapeutic window for HDACIs that have limited CNS exposure to unbound drug and guide targeted dosing strategies. Significance Statement This study indicates that quisinostat and vorinostat are susceptible to enzymatic degradation in the plasma, and to a lesser degree, in the target CNS tissues. Employing techniques that minimize the post-sampling degradation in plasma, brain and spinal cord, accurate CNS distributional kinetic parameters for these potentially useful compounds were determined. A knowledge of CNS exposure (Kp,uu), time to peak, and duration can inform dosing strategies in preclinical and clinical trials in selected CNS tumors.
RESUMO
Panobinostat is a potent pan-HDAC inhibitor that has been tested in multiple studies for the treatment of brain tumors. There have been contrasting views surrounding its efficacy for the treatment of tumors in the CNS following systemic administration when examined in different models or species. We conducted experiments using three different mouse strains or genotypes to have a more comprehensive understanding of the systemic as well as the CNS distributional kinetics of panobinostat. Our study found that panobinostat experienced rapid degradation in vitro in FVB mouse matrices and a faster degradation rate was observed at 37{degree sign}C compared with room temperature and 4{degree sign}C, suggesting that the in vitro instability of panobinostat was due to enzymatic metabolism. Panobinostat also showed inter-strain and inter-species differences in the in vitro plasma stability; and was stable in human plasma. The objective of this study was to examine the in vitro metabolic stability of panobinostat in different matrices and assess the influence of that metabolic stability on the in vivo pharmacokinetics and CNS delivery of panobinostat. Importantly, the plasma stability in various mouse strains was not reflected in the in vivo systemic pharmacokinetic behavior of panobinostat. Several hypotheses arise from this finding, including: the binding of panobinostat to red blood cells, the existence of competing endogenous compounds to enzyme(s), the distribution into tissues with a lower level of enzymatic activity or the metabolism occurring in the plasma is a small fraction of the total metabolism in vivo Significance Statement Panobinostat showed different in vitro degradation in plasma from different mouse strains and genotypes. However, despite the differences surrounding in vitro plasma stability, panobinostat showed similar in vivo pharmacokinetic behavior in different mouse models. This suggests that the inter-strain difference in enzymatic activity did not affect the in vivo pharmacokinetic behavior of panobinostat and its CNS distribution in mice. This lack of translation between in vitro metabolism assays and in vivo disposition can confound drug development.
RESUMO
Leptomeningeal metastasis (LM) occurs when cancer cells infiltrate the subarachnoid space (SAS) and metastasize to the fibrous structures that surround the brain and spinal cord. These structures include the leptomeninges (i.e., the pia mater and arachnoid mater), as well as subarachnoid trabeculae, which are collagen-rich fibers that provide mechanical structure for the SAS, support resident cells, and mediate flow of cerebrospinal fluid (CSF). Although there is a strong expectation that the presence of fibers within the SAS influences LM to be a major driver of tumor progression and lethality, exactly how trabecular architecture relates to the process of metastasis in cancer is poorly understood. This lack of understanding is likely due in part to the difficulty of accessing and manipulating this tissue compartment in vivo. Here, we utilized electrospun polycaprolactone (PCL) to produce structures bearing remarkable morphological similarity to native SAS fiber architecture. First, we profiled the native architecture of leptomeningeal and trabecular fibers collected from rhesus macaque monkeys, evaluating both qualitative and quantitative differences in fiber ultrastructure for various regions of the CNS. We then varied electrospinning parameters to produce a small library of PCL scaffolds possessing distinct architectures mimicking the range of fiber properties observed in vivo. For proof of concept, we studied the metastasis-related behaviors of human pediatric medulloblastoma cells cultured in different fiber microenvironments. These studies demonstrated that a more open, porous fiber structure facilitates DAOY cell spread across and infiltration into the meningeal mimic. Our results present a new tissue engineered model of the subarachnoid space and affirm the expectation that fiber architecture plays an important role in mediating metastasis-related behaviors in an in vitro model of pediatric medulloblastoma.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Criança , Humanos , Macaca mulatta , Espaço Subaracnóideo , Microambiente TumoralRESUMO
Achieving adequate exposure of the free therapeutic agent at the target is a critical determinant of efficacious chemotherapy. With this in mind, a major challenge in developing therapies for central nervous system (CNS) tumors is to overcome barriers to delivery, including the blood-brain barrier (BBB). Panobinostat is a nonselective pan-histone deacetylase inhibitor that is being tested in preclinical and clinical studies, including for the treatment of pediatric medulloblastoma, which has a propensity for leptomeningeal spread and diffuse midline glioma, which can infiltrate into supratentorial brain regions. In this study, we examined the rate, extent, and spatial heterogeneity of panobinostat CNS distribution in mice. Transporter-deficient mouse studies show that panobinostat is a dual substrate of P-glycoprotein (P-gp) and breast cancer resistant protein (Bcrp), which are major efflux transporters expressed at the BBB. The CNS delivery of panobinostat was moderately limited by P-gp and Bcrp, and the unbound tissue-to-plasma partition coefficient of panobinostat was 0.32 and 0.21 in the brain and spinal cord in wild-type mice. In addition, following intravenous administration, panobinostat demonstrated heterogeneous distribution among brain regions, indicating that its efficacy would be influenced by tumor location or the presence and extent of leptomeningeal spread. Simulation using a compartmental BBB model suggests inadequate exposure of free panobinostat in the brain following a recommended oral dosing regimen in patients. Therefore, alternative approaches to CNS delivery may be necessary to have adequate exposure of free panobinostat for the treatment of a broad range of pediatric brain tumors. SIGNIFICANCE STATEMENT: This study shows that the central nervous system (CNS) penetration of panobinostat is limited by P-gp and Bcrp, and its efficacy may be limited by inadequate distribution to the tumor. Panobinostat has heterogeneous distribution into various brain regions, indicating that its efficacy might depend on the anatomical location of the tumors. These distributional parameters in the mouse CNS can inform both preclinical and clinical trial study design and may guide treatment for these devastating brain tumors in children.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Neoplasias Encefálicas , Criança , Humanos , Animais , Camundongos , Panobinostat/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Proteínas de Membrana Transportadoras/metabolismoRESUMO
Glioblastoma (GBM) brain tumors contain a subpopulation of self-renewing multipotent Glioblastoma stem-like cells (GSCs) that are believed to drive the near inevitable recurrence of GBM. We previously engineered temperature responsive scaffolds based on the polymer poly(N-isopropylacrylamide-co-Jeffamine M-1000 acrylamide) (PNJ) for the purpose of enriching GSCs in vitro from patient-derived samples. Here, we used PNJ scaffolds to study microenvironmental regulation of self-renewal and radiation response in patient-derived GSCs representing classical and proneural subtypes. GSC self-renewal was regulated by the composition of PNJ scaffolds and varied with cell type. PNJ scaffolds protected against radiation-induced cell death, particularly in conditions that also promoted GSC self-renewal. Additionally, cells cultured in PNJ scaffolds exhibited increased expression of the transcription factor HIF2α, which was not observed in neurosphere culture, providing a potential mechanistic basis for differences in radio-resistance. Differences in PNJ regulation of HIF2α in irradiated and untreated conditions also offered evidence of stem plasticity. These data show PNJ scaffolds provide a unique biomaterial for evaluating dynamic microenvironmental regulation of GSC self-renewal, radioresistance, and stem plasticity.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Linhagem Celular Tumoral , Humanos , Células-Tronco NeoplásicasRESUMO
T2â relaxivity contrast imaging may serve as a potential imaging biomarker for amyotrophic lateral sclerosis (ALS) by noninvasively quantifying the tissue microstructure. In this preliminary longitudinal study, we investigated the Transverse Relaxivity at Tracer Equilibrium (TRATE) in three muscle groups between SOD1-G93A (ALS model) rat and a control population at two different timepoints. The control group was time matched to the ALS group such that the second timepoint was the onset of disease. We observed a statistically significant decrease in TRATE over time in the gastrocnemius, tibialis, and digital flexor muscles in the SOD1-G93A model (p-value = 0.003, 0.008, 0.005; respectively), whereas TRATE did not change over time in the control group (p-value = 0.4777, 0.6837, 0.9682; respectively). Immunofluorescent staining revealed a decrease in minimum fiber area and cell density in the SOD1-G93A model when compared to the control group (p-value = 6.043E-10 and 2.265E-10, respectively). These microstructural changes observed from histology align with the theorized biophysical properties of TRATE. We demonstrate that TRATE can longitudinally differentiate disease associated atrophy from healthy muscle and has potential to serve as a biomarker for disease progression and ultimately therapy response in patients with ALS.
Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Estudos Longitudinais , Camundongos , Camundongos Transgênicos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , RatosRESUMO
Therapeutic development of histone deacetylase inhibitors (HDACi) has been hampered by a number of barriers to drug delivery, including poor solubility and inadequate tissue penetration. Nanoparticle encapsulation could be one approach to improve the delivery of HDACi to target tissues; however, effective and generalizable loading of HDACi within nanoparticle systems remains a long-term challenge. We hypothesized that the common terminally ionizable moiety on many HDACi molecules could be capitalized upon for loading in polymeric nanoparticles. Here, we describe the simple, efficient formulation of a novel library of ß-cyclodextrin-poly (ß-amino ester) networks (CDN) to achieve this goal. We observed that network architecture was a critical determinant of CDN encapsulation of candidate molecules, with a more hydrophobic core enabling effective self-assembly and a PEGylated surface enabling high loading (up to â¼30% w/w), effective self-assembly of the nanoparticle, and slow release of drug into aqueous media (up to 24 days) for the model HDACi panobinostat. We next constructed a library of CDNs to encapsulate various small, hydrophobic, terminally ionizable molecules (panobinostat, quisinostat, dacinostat, givinostat, bortezomib, camptothecin, nile red, and cytarabine), which yielded important insights into the structural requirements for effective drug loading and CDN self-assembly. Optimized CDN nanoparticles were taken up by GL261 cells in culture and a released panobinostat was confirmed to be bioactive. Panobinostat-loaded CDNs were next administered by convection-enhanced delivery (CED) to mice bearing intracranial GL261 tumors. These studies confirm that CDN encapsulation enables a higher deliverable dose of drug to effectively slow tumor growth. Matrix-assisted laser desorption/ionization (MALDI) analysis on tissue sections confirms higher exposure of tumor to drug, which likely accounts for the therapeutic effects. Taken in sum, these studies present a novel nanocarrier platform for encapsulation of HDACi via both ionic and hydrophobic interactions, which is an important step toward better treatment of disease via HDACi therapy.
Assuntos
Inibidores de Histona Desacetilases/administração & dosagem , Nanopartículas/química , beta-Ciclodextrinas/química , Aminas/química , Animais , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Panobinostat/administração & dosagem , Poliésteres/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Exogenously administered 17ß-estradiol (E2) can improve spatial learning and memory, although E2 also exerts undesired effects on peripheral organs. Clinically, E2 has been solubilized in cyclodextrin for intranasal administration, which enhances brain-specific delivery. Prior work shows that the cyclodextrin structure impacts region-specific brain distribution of intranasally administered small molecules. Here, we investigated (1) cyclodextrin type-specific modulation of intranasal E2 brain distribution, and (2) cognitive and peripheral tissue effects of intranasal E2 in middle-aged ovariectomized rats. First, brain and peripheral organ distribution of intranasally administered, tritiated E2 was measured for E2 solubilized freely or in one of four cyclodextrin formulations. The E2-cyclodextrin formulation with greatest E2 uptake in cognitive brain regions versus uterine horns was then compared to free E2 on learning, memory, and uterine measures. Free E2 improved spatial reference memory, whereas E2-cyclodextrin impaired spatial working memory compared to their respective controls. Both E2 formulations increased uterine horn weights relative to controls, with E2-cyclodextrin resulting in the greatest uterine horn weight, suggesting increased uterine stimulation. Thus, intranasal administration of freely solubilized E2 is a strategic delivery tool that can yield a cognitively beneficial impact of the hormone alongside decreased peripheral effects compared to intranasal administration of cyclodextrin solubilized E2.
RESUMO
OBJECTIVE: Chemotherapy infusions directly into the fourth ventricle may play a role in treating malignant fourth-ventricular tumors. This study tested the safety and pharmacokinetics of short-term and long-term administration of MTX110 (soluble panobinostat; Midatech Pharma) into the fourth ventricle of nonhuman primates. METHODS: Four rhesus macaque monkeys underwent posterior fossa craniectomy and catheter insertion into the fourth ventricle. In group I (n = 2), catheters were externalized and lumbar drain catheters were placed simultaneously to assess CSF distribution after short-term infusions. MTX110 (0.5 ml of 300 µM panobinostat solution) was infused into the fourth ventricle daily for 5 consecutive days. Serial CSF and serum panobinostat levels were measured. In group II (n = 2), fourth-ventricle catheters were connected to a subcutaneously placed port for subsequent long-term infusions. Four cycles of MTX110, each consisting of 5 daily infusions (0.5 ml of 300 µM panobinostat solution), were administered over 8 weeks. Animals underwent detailed neurological evaluations, MRI scans, and postmortem histological analyses. RESULTS: No neurological deficits occurred after intraventricular MTX110 infusions. MRI scans showed catheter placement within the fourth ventricle in all 4 animals, with extension to the cerebral aqueduct in 1 animal and into the third ventricle in 1 animal. There were no MRI signal changes in the brainstem, cerebellum, or elsewhere in the brains of any of the animals. Histologically, normal brain cytoarchitecture was preserved with only focal mild postsurgical changes in all animals. Panobinostat was undetectable in serum samples collected 2 and 4 hours after infusions in all samples in both groups. In group I, the mean peak panobinostat level in the fourth-ventricle CSF (6242 ng/ml) was significantly higher than that in the lumbar CSF (9 ng/ml; p < 0.0001). In group II, the mean peak CSF panobinostat level (11,042 ng/ml) was significantly higher than the mean trough CSF panobinostat level (33 ng/ml; p < 0.0001). CONCLUSIONS: MTX110 can be safely infused into the fourth ventricle in nonhuman primates at supratherapeutic doses. Postinfusion CSF panobinostat levels peak immediately in the fourth ventricle and then rapidly decrease over 24 hours. Panobinostat is detectable at low levels in CSF measured from the lumbar cistern up to 4 hours after infusions. These results will provide background data for a pilot clinical trial in patients with recurrent medulloblastoma.
RESUMO
Dysregulation of the retinoic acid (RA) signaling pathway is observed in amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Here, we investigated the therapeutic potential of retinoid activation via the RA receptor ß (RARß) in the SOD1 G93A mouse model of ALS. Our approach utilized the RARß agonist adapalene, which we previously found to be neuroprotective in vitro. Adapalene, like most retinoids, is poorly water soluble, which has thus far prevented effective drug delivery in vivo. To address this challenge, we encapsulated adapalene within nanoparticles (Adap-NPs) composed of poly(lactic acid)-poly(ethylene glycol) (PLA-PEG). Our data demonstrate that intravenous administration of Adap-NPs robustly activates retinoid signaling in the CNS. Chronic administration of Adap-NPs resulted in improved motor performance, prolonged lifespan, and neuroprotection in SOD1 G93A mice. This study highlights retinoid signaling as a valuable therapeutic approach and presents a novel nanoparticle platform for the treatment of ALS.
RESUMO
Alternative routes of administration are one approach that could be used to bypass the blood-brain barrier (BBB) for effective drug delivery to the central nervous system (CNS). Here, we focused on intranasal delivery of polymer nanoparticles. We hypothesized that surface modification of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with rabies virus glycoprotein (RVG29) would increase residence time and exposure of encapsulated payload to the CNS compared to non-targeted nanoparticles. Delivery kinetics and biodistribution were analyzed by administering nanoparticles loaded with the carbocyanine dye 1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine Iodide (DiR) to healthy mice. Intranasal administration yielded minimal exposure of nanoparticle payload to most peripheral organs and rapid, effective delivery to whole brain. Regional analysis of payload delivery within the CNS revealed higher delivery to tissues closest to the trigeminal nerve, including the olfactory bulb, striatum, midbrain, brainstem, and cervical spinal cord. RVG29 surface modifications presented modest targeting benefits to the striatum, midbrain, and brainstem 2 h after administration, although targeting was not observed 30 min or 6 h after administration. Payload delivery to the trigeminal nerve was 3.5× higher for targeted nanoparticles compared to control nanoparticles 2 h after nanoparticle administration. These data support a nose-to-brain mechanism of drug delivery that closely implicates the trigeminal nerve for payload delivery from nanoparticles via transport of intact nanoparticles and eventual diffusion of payload. Olfactory and CSF routes are also observed to play a role. These data advance the utility of targeted nanoparticles for nose-to-brain drug delivery of lipophilic payloads and provide mechanistic insight to engineer effective delivery vectors to treat disease in the CNS.
RESUMO
Hormone therapy that contains 17ß-estradiol (E2) is used commonly for treatment of symptoms associated with menopause. E2 treatment has been shown to improve cognitive function following the decrease in ovarian hormones that is characteristic of menopause. However, once in circulation, the majority of E2 is bound to serum hormone binding globulin or albumin, becoming biologically inactive. Thus, therapeutic efficacy of E2 stands to benefit from increased bioavailability via sustained release of the hormone. Here, we focus on the encapsulation of E2 within polymeric nanoparticles composed of poly(lactic-co-glycolic) acid (PLGA). PLGA agent encapsulation offers several delivery advantages, including improved bioavailability and sustained biological activity of encapsulated agents. We hypothesized that delivery of E2 from PLGA nanoparticles would enhance the beneficial cognitive effects of E2 relative to free E2 or non-hormone loaded nanoparticle controls in a rat model of menopause. To test this hypothesis, spatial learning and memory were assessed in middle-aged ovariectomized rats receiving weekly subcutaneous treatment of either oil-control, free (oil-solubilized) E2, blank (non-hormone loaded) PLGA, or E2-loaded PLGA. Unexpectedly, learning and memory differed significantly between the two vehicle control groups. E2-loaded PLGA nanoparticles improved learning and memory relative to its control, while learning and memory were not different between free E2 and its vehicle control. These results suggest that delivery of E2 from PLGA nanoparticles offered cognitive benefit. However, when evaluating peripheral burden, E2-loaded PLGA was found to increase uterine stimulation compared to free E2, which is an undesired outcome, as estrogen exposure increases uterine cancer risk. In sum, a weekly E2 treatment regimen of E2 from PLGA nanoparticles increased cognitive efficacy and was accompanied with an adverse impact on the periphery, effects that may be due to the improved agent bioavailability and sustained biological activity offered by PLGA nanoparticle encapsulation. These findings underscore the risk of non-specific enhancement of E2 delivery and provide a basic framework for the study and development of E2's efficacy as a cognitive therapeutic with the aid of customizable polymeric nano-carriers.
RESUMO
BACKGROUND: DNA methylation inhibitors are logical therapeutic candidates for ependymomas originating in the posterior fossa of the brain. Our objective was to test the safety of infusing 5-Azacytidine (5-AZA), a DNA methylation inhibitor, directly into cerebrospinal fluid (CSF) spaces of the fourth ventricle or tumor resection cavity in children with recurrent ependymoma originating in the posterior fossa. MATERIALS AND METHODS: In patients with recurrent ependymoma whose disease originated in the posterior fossa, a maximal safe subtotal tumor resection was performed. At the conclusion of the tumor resection, a catheter was surgically placed into the fourth ventricle or tumor resection cavity and attached to a ventricular access device. CSF flow from the posterior fossa to the sacrum was confirmed by CINE phase contrast magnetic resonance imaging (MRI) postoperatively. 12 consecutive weekly 10 milligram (mg) infusions of 5-Azacytidine (AZA) were planned. Disease response was monitored with MRI scans and CSF cytology. RESULTS: Six patients were enrolled. One patient was withdrawn prior to planned 5-AZA infusions due to surgical complications after tumor resection. The remaining five patients received 8, 12, 12, 12, and 12 infusions, respectively. There were no serious adverse events or new neurological deficits attributed to 5-AZA infusions. All five patients with ependymoma who received 5-AZA infusions had progressive disease. Two of the five patients, however, were noted to have decrease in the size of at least one intraventricular lesion. CONCLUSION: 5-AZA can be infused into the fourth ventricle or posterior fossa tumor resection cavity without causing neurological toxicity. Future studies with higher doses and/or increased dosing frequency are warranted.
Assuntos
Antineoplásicos/administração & dosagem , Azacitidina/administração & dosagem , Ependimoma/tratamento farmacológico , Neoplasias Infratentoriais/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Criança , Pré-Escolar , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Ependimoma/diagnóstico por imagem , Ependimoma/cirurgia , Feminino , Quarto Ventrículo , Humanos , Neoplasias Infratentoriais/diagnóstico por imagem , Neoplasias Infratentoriais/cirurgia , Infusões Intraventriculares , Masculino , Projetos Piloto , Resultado do TratamentoRESUMO
Biodistribution is a valuable technique used to determine payload delivery from nanocarrier to organs of interest in preclinical models. Fluorescent probes can be used as drug surrogates, providing indirect but relevant measurement of tissue exposure to the carrier. This may be useful, for example, to perform a first-pass evaluation of how targeting affects delivery of encapsulated compounds to target organs. This protocol is designed for non-enzymatic tissue homogenization of a variety of organ types allowing tracking of small molecule fluorophores injected freely or encapsulated in nanoparticles.
Assuntos
Especificidade de Órgãos , Técnicas de Cultura de Tecidos/métodos , Animais , Corantes Fluorescentes/metabolismo , Camundongos , Sonicação , Distribuição TecidualRESUMO
Histone deacetylases (HDACs) are known to be key enzymes in cancer development and progression through their modulation of chromatin structure and the expression and post-translational modification of numerous proteins. Aggressive dedifferentiated tumors, like glioblastoma, frequently overexpress HDACs, while HDAC inhibition can lead to cell cycle arrest, promote cellular differentiation and induce apoptosis. Although multiple HDAC inhibitors, such as quisinostat, are of interest in oncology due to their potent in vitro efficacy, their failure in the clinic as monotherapies against solid tumors has been attributed to poor delivery. Thus, we were motivated to develop quisinostat loaded poly(D,L-lactide)-b-methoxy poly(ethylene glycol) nanoparticles (NPs) to test their ability to treat orthotopic glioblastoma. In developing our NP formulation, we identified a novel, pH-driven approach for achieving over 9% (w/w) quisinostat loading. We show quisinostat-loaded NPs maintain drug potency in vitro and effectively slow tumor growth in vivo, leading to a prolonged survival compared to control mice.
Assuntos
Glioblastoma/tratamento farmacológico , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/uso terapêutico , Polietilenoglicóis/química , Animais , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , CamundongosRESUMO
Most estrogen-based hormone therapies are administered in combination with a progestogen, such as Levonorgestrel (Levo). Individually, the estrogen 17ß-estradiol (E2) and Levo can improve cognition in preclinical models. However, although these hormones are often given together clinically, the impact of the E2 + Levo combination on cognitive function has yet to be methodically examined. Thus, we investigated E2 + Levo treatment on a cognitive battery in middle-aged, ovariectomized rats. When administered alone, E2 and Levo treatments each enhanced spatial working memory relative to vehicle treatment, whereas the E2 + Levo combination impaired high working memory load performance relative to E2 only and Levo only treatments. There were no effects on spatial reference memory. Mitogen-activated protein kinases/extracellular signal-regulated kinases pathway activation, which is involved in memory formation and estrogen-induced memory effects, was evaluated in 5 brain regions implicated in learning and memory. A distinct relationship was seen in the E2-only treatment group between mitogen-activated protein kinases/extracellular signal-regulated kinases pathway activation in the frontal cortex and working memory performance. Collectively, the results indicate that the differential neurocognitive effects of combination versus sole treatments are vital considerations as we move forward as a field to develop novel, and to understand currently used, exogenous hormone regimens across the lifespan.
Assuntos
Envelhecimento/psicologia , Cognição/efeitos dos fármacos , Estradiol/administração & dosagem , Estradiol/farmacologia , Levanogestrel/administração & dosagem , Levanogestrel/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Nootrópicos , Ovariectomia , Envelhecimento/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Cognição/fisiologia , Quimioterapia Combinada , Feminino , Lobo Frontal , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Ratos Endogâmicos F344 , Memória Espacial/efeitos dos fármacosRESUMO
Glioblastoma (GBM) is an aggressive primary brain tumor. The rapid growth and the privileged provenance of the tumor within the brain contribute to its aggressivity and poor therapeutic targeting. A poor prognostic factor in glioblastoma is the deletion or mutation of the Nf1 gene. This gene codes for the protein neurofibromin, a tumor suppressor gene that is known to interact with the collapsin response mediator protein 2 (CRMP2). CRMP2 expression and elevated expression of nuclear phosphorylated CRMP2 have recently been implicated in cancer progression. The CRMP2-neurofibromin interaction protects CRMP2 from its phosphorylation by cyclin-dependent kinase 5 (Cdk5), an event linked to cancer progression. In three human glioblastoma cell lines (GL15, A172, and U87), we observed an inverse correlation between neurofibromin expression and CRMP2 phosphorylation levels. Glioblastoma cell proliferation was dependent on CRMP2 expression and phosphorylation by Cdk5 and glycogen synthase kinase 3 beta (GSK3ß). The CRMP2 phosphorylation inhibitor (S)-lacosamide reduces, in a concentration-dependent manner, glioblastoma cell proliferation and induced apoptosis in all three GBM cell lines tested. Since (S)-lacosamide is bioavailable in the brain, we tested its utility in an in vivo orthotopic model of GBM using GL261-LucNeo glioma cells. (S)-lacosamide decreased tumor size, as measured via in vivo bioluminescence imaging, by ~54% compared to vehicle control. Our results introduce CRMP2 expression and phosphorylation as a novel player in GBM proliferation and survival, which is enhanced by loss of Nf1.
Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Proliferação de Células/efeitos dos fármacos , Humanos , Lacosamida/farmacologia , Camundongos Endogâmicos C57BL , Neurofibromina 1/metabolismo , Fosforilação/efeitos dos fármacosRESUMO
Glioblastoma (GBM) is the most common adult primary brain tumor, and the 5-year survival rate is less than 5%. GBM malignancy is driven in part by a population of GBM stem-like cells (GSCs) that exhibit indefinite self-renewal capacity, multipotent differentiation, expression of neural stem cell markers, and resistance to conventional treatments. GSCs are enriched in specialized niche microenvironments that regulate stem phenotypes and support GSC radioresistance. Therefore, identifying GSC-niche interactions that regulate stem phenotypes may present a unique target for disrupting the maintenance and persistence of this treatment resistant population. In this work, we engineered 3D scaffolds from temperature responsive poly(N-isopropylacrylamide-co-Jeffamine M-1000® acrylamide), or PNJ copolymers, as a platform for enriching stem-specific phenotypes in two molecularly distinct human patient-derived GSC cell lines. Notably, we observed that, compared to conventional neurosphere cultures, PNJ cultured GSCs maintained multipotency and exhibited enhanced self-renewal capacity. Concurrent increases in expression of proteins known to regulate self-renewal, invasion, and stem maintenance in GSCs (NESTIN, EGFR, CD44) suggest that PNJ scaffolds effectively enrich the GSC population. We further observed that PNJ cultured GSCs exhibited increased resistance to radiation treatment compared to GSCs cultured in standard neurosphere conditions. GSC radioresistance is supported in vivo by niche microenvironments, and this remains a significant barrier to effectively treating these highly tumorigenic cells. Taken in sum, these data indicate that the microenvironment created by synthetic PNJ scaffolds models niche enrichment of GSCs in patient-derived GBM cell lines, and presents tissue engineering opportunities for studying clinically important behaviors such as radioresistance in vitro.
Assuntos
Resinas Acrílicas/química , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Alicerces Teciduais/química , Microambiente Tumoral , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular Tumoral , Autorrenovação Celular , Humanos , Células Tumorais CultivadasRESUMO
With menopause, circulating levels of 17ß-estradiol (E2) markedly decrease. E2-based hormone therapy is prescribed to alleviate symptoms associated with menopause. E2 is also recognized for its beneficial effects in the central nervous system (CNS), such as enhanced cognitive function following abrupt hormonal loss associated with ovariectomy. For women with an intact uterus, an opposing progestogen component is required to decrease the risk of developing endometrial hyperplasia. While adding an opposing progestogen attenuates these detrimental effects on the uterus, it can attenuate the beneficial effects of E2 in the CNS. Poly(lactic-co-glycolic acid) (PLGA) micro- and nano- carriers (MNCs) have been heavily investigated for their ability to enhance the therapeutic activity of hydrophobic agents following exogenous administration, including E2. Multiple PLGA MNC formulation parameters, such as composition, molecular weight, and type of solvent used, can be altered to systematically manipulate the pharmacokinetic and pharmacodynamic profiles of encapsulated agents. Thus, there is an opportunity to enhance the therapeutic activity of E2 in the CNS through controlled delivery from PLGA MNCs. The aim of this review is to consider the fate of exogenously administered E2 and discuss how PLGA MNCs and route of administration can be used as strategies for controlled E2 delivery.