Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172945, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703849

RESUMO

The coagulation process has a high potential as a treatment method that can handle pathogenic viruses including emerging enveloped viruses in drinking water treatment process which can lower infection risk through drinking water consumption. In this study, a surrogate enveloped virus, bacteriophage Փ6, and surrogate non-enveloped viruses, including bacteriophage MS-2, T4, ՓX174, were used to evaluate removal efficiencies and mechanisms by the conventional coagulation process with alum, poly­aluminum chloride, and ferric chloride at pH 5, 7, and 9 in turbid water. Also, treatability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recent virus of global concern by coagulation was evaluated as SARS-CoV-2 can presence in drinking water sources. It was observed that an increase in the coagulant dose enhanced the removal efficiency of turbidity and viruses, and the condition that provided the highest removal efficiency of enveloped and non-enveloped viruses was 50 mg/L of coagulants at pH 5. In addition, the coagulation process was more effective for enveloped virus removal than for the non-enveloped viruses, and it demonstrated reduction of SARS-CoV-2 Omicron BA.2 over 0.83-log with alum. According to culture- and molecular-based assays (qPCR and CDDP-qPCR), the virus removal mechanisms were floc adsorption and coagulant inactivation. Through inactivation with coagulants, coagulants caused capsid destruction, followed by genome damage in non-enveloped viruses; however, damage to a lipid envelope is suggested to contribute to a great extend for enveloped virus inactivation. We demonstrated that conventional coagulation is a promising method for controlling emerging and re-emerging viruses in drinking water.


Assuntos
SARS-CoV-2 , Purificação da Água , Purificação da Água/métodos , SARS-CoV-2/fisiologia , COVID-19 , Água Potável/virologia , Água Potável/química , Compostos de Alúmen , Microbiologia da Água , Betacoronavirus/fisiologia , Floculação , Compostos de Alumínio , Compostos Férricos/química
2.
Sci Total Environ ; 912: 169375, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38110101

RESUMO

Hand, foot, and mouth disease (HFMD) is contagious and predominantly affects children below the age of five. HFMD-associated serotypes of Enterovirus A (EVA) family include EVA71, Coxsackievirus A type 6 (CVA6), 10 (CVA10), and 16 (CVA16). Although prevalent in numerous Asian countries, studies on HFMD-causing agents in wastewater are scarce. This study aimed to conduct wastewater surveillance in various Asian communities to detect and quantify serotypes of EVA associated with HFMD. In total, 77 wastewater samples were collected from Indonesia, the Philippines, Thailand, and Vietnam from March 2022 to February 2023. The detection ratio for CVA6 RNA in samples from Vietnam was 40 % (8/20). The detection ratio for CVA6 and EVA71 RNA each was 25 % (5/20) for the Indonesian samples, indicating the need for clinical surveillance of CVA6, as clinical reports have been limited. For the Philippines, 12 % (2/17) of the samples were positive for CVA6 and EVA71 RNA each, with only one quantifiable sample each. Samples from Thailand had a lower detection ratio (1/20) for CVA6 RNA, and the concentration was unquantifiable. Conversely, CVA10 and CVA16 RNAs were not detected in any of the samples. The minimum and maximum concentrations of CVA6 RNA were 2.7 and 3.9 log10 copies/L and those for EVA71 RNA were 2.5 and 4.9 log10 copies/L, respectively. This study underscores the importance of wastewater surveillance in understanding the epidemiology of HFMD-associated EVA serotypes in Asian communities. Long-term wastewater surveillance is recommended to monitor changes in dominant serotypes, understand seasonality, and develop effective prevention and control strategies for HFMD.


Assuntos
Enterovirus , Doença de Mão, Pé e Boca , Criança , Humanos , Doença de Mão, Pé e Boca/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , RNA , Tailândia/epidemiologia , China/epidemiologia , Filogenia
3.
Sci Total Environ ; 905: 167060, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37709091

RESUMO

Wastewater-based epidemiology (WBE) has been implemented globally. However, there remains confusion about the number and frequency of samples to be collected, as well as which types of treatment systems can provide reliable specific details about the virus prevalence in specific areas or communities, enabling prompt management and intervention measures. More research is necessary to fully comprehend the possibility of deploying sentinel locations in sewer networks in larger geographic areas. The present study introduces the first report on wastewater-based surveillance in Gandhinagar City using digital PCR (d-PCR) as a SARS-Cov-2 quantification tool, which describes the viral load from five pumping stations in Gandhinagar from October 2021 to March 2022. Raw wastewater samples (n = 119) were received and analyzed weekly to detect SARS-CoV-2 RNA, 109 of which were positive for N1 or N2 genes. The monthly variation analysis in viral genome copies depicted the highest concentrations in January 2022 and February 2022 (p < 0.05; Wilcoxon signed rank test) coincided with the Omicron wave, which contributed mainly from Vavol and Jaspur pumping stations. Cross-correlation analysis indicated that WBE from five stations in Gandhinagar, i.e., capital city sewer networks, provided two-week lead times to the citywide and statewide active cases (time-series cross-correlation function [CCF]; 0.666 and 0.648, respectively), mainly from individual contributions of the urbanized Kudasan and Vavol stations (CCF; 0.729 and 0.647, respectively). These findings suggest that sewer pumping stations in urbanized neighborhoods can be used as sentinel sites for statewide clinical surveillance and that WBE surveillance using digital PCR can be an efficient monitoring and management tool.


Assuntos
COVID-19 , RNA Viral , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Reação em Cadeia da Polimerase , Índia , Teste para COVID-19
4.
Sci Total Environ ; 902: 165818, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517714

RESUMO

Recreational exposure to microbial pollution at urban beaches poses a health risk to beachgoers. The accurate quantification of such risks is crucial in managing beaches effectively and establishing warning guidelines. In this study, we employed a quantitative microbial risk assessment (QMRA) framework to assess marine water quality and estimate the risks associated with Vibrio parahaemolyticus, an autochthonous pathogen that causes gastrointestinal illnesses, and enterococci, a traditional fecal bacteria indicator. The microbial contamination levels of V. parahaemolyticus and enterococci were determined from 48 water samples collected at two beaches in Thailand during dry and wet seasons. The accidentally ingested water volumes were obtained through a survey involving 438 respondents. The probability of illness (Pill) was estimated using dose-response models and Monte Carlo simulation. The results revealed that enterococci posed a higher risk of illness than V. parahaemolyticus at all seven study sites. The median combined gastrointestinal (GI) risk from both bacteria at all sites met the US EPA risk benchmark of 0.036 and the 0.05 benchmark set by the WHO, but the 95th percentile risk data at all sites exceeded the benchmarks. This emphasizes the need for the continuous monitoring and management of microbial pollution at these sites. The site-specific exposure data showed higher estimated risks with increased variations compared to the WHO-referenced values, which highlights the significance of locally measured microbial concentrations and survey exposure data to avoid underestimation. Estimating the risks from recreational exposure to waterborne bacteria can inform beach management policies aimed at reducing public health risks to swimmers. The study findings improve the understanding of the risks associated with water recreation activities at Southeast Asian beaches and offer valuable insights for the development of water quality guidelines, which are crucial for the sustainable development of the blue economy.


Assuntos
Praias , Monitoramento Ambiental , Gastroenteropatias , Vibrio parahaemolyticus , Microbiologia da Água , Qualidade da Água , Humanos , Bactérias/isolamento & purificação , Enterococcus/isolamento & purificação , Monitoramento Ambiental/métodos , Fezes/microbiologia , Medição de Risco , População do Sudeste Asiático , Gastroenteropatias/epidemiologia , Gastroenteropatias/microbiologia , População Urbana , Natação , Vibrio parahaemolyticus/isolamento & purificação , Tailândia
5.
Sci Total Environ ; 896: 165229, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37394072

RESUMO

Antimicrobial resistance has been a serious and complex issue for over a decade. Although research on antimicrobial resistance (AMR) has mainly focused on clinical and animal samples as essential for treatment, the AMR situation in aquatic environments may vary and have complicated patterns according to geographical area. Therefore, this study aimed to examine recent literature on the current situation and identify gaps in the AMR research on freshwater, seawater, and wastewater in Southeast Asia. The PubMed, Scopus, and ScienceDirect databases were searched for relevant publications published from January 2013 to June 2023 that focused on antimicrobial resistance bacteria (ARB) and antimicrobial resistance genes (ARGs) among water sources. Based on the inclusion criteria, the final screening included 41 studies, with acceptable agreement assessed using Cohen's inter-examiner kappa equal to 0.866. This review found that 23 out of 41 included studies investigated ARGs and ARB reservoirs in freshwater rather than in seawater and wastewater, and it frequently found that Escherichia coli was a predominant indicator in AMR detection conducted by both phenotypic and genotypic methods. Different ARGs, such as blaTEM, sul1, and tetA genes, were found to be at a high prevalence in wastewater, freshwater, and seawater. Existing evidence highlights the importance of wastewater management and constant water monitoring in preventing AMR dissemination and strengthening effective mitigation strategies. This review may be beneficial for updating current evidence and providing a framework for spreading ARB and ARGs, particularly region-specific water sources. Future AMR research should include samples from various water systems, such as drinking water or seawater, to generate contextually appropriate results. Robust evidence regarding standard detection methods is required for prospective-era work to raise practical policies and alerts for developing microbial source tracking and identifying sources of contamination-specific indicators in aquatic environment markers.


Assuntos
Farmacorresistência Bacteriana , Água Doce , Água do Mar , Águas Residuárias , Microbiologia da Água , Animais , Bactérias/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Genes Bacterianos/genética , Estudos Prospectivos , Águas Residuárias/análise , Águas Residuárias/microbiologia , Água/análise , Água do Mar/análise , Água do Mar/microbiologia , Água Doce/análise , Água Doce/microbiologia , Sudeste Asiático
6.
J Virol Methods ; 317: 114732, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080396

RESUMO

The ongoing COVID-19 pandemic has emphasized the significance of wastewater surveillance in monitoring and tracking the spread of infectious diseases, including SARS-CoV-2. The wastewater surveillance approach detects genetic fragments from viruses in wastewater, which could provide an early warning of outbreaks in communities. In this study, we determined the concentrations of four types of endogenous viruses, including non-enveloped DNA (crAssphage and human adenovirus 40/41), non-enveloped RNA (enterovirus), and enveloped RNA (SARS-CoV-2) viruses, from wastewater samples using the adsorption-extraction (AE) method with electronegative HA membranes of different pore sizes (0.22, 0.45, and 0.80 µm). Our findings showed that the membrane with a pore size of 0.80 µm performed comparably to the membrane with a pore size of 0.45 µm for virus detection/quantitation (repeated measurement one-way ANOVA; p > 0.05). We also determined the recovery efficiencies of indigenous crAssphage and pepper mild mottle virus, which showed recovery efficiencies ranging from 50% to 94% and from 20% to 62%, respectively. Our results suggest that the use of larger pore size membranes may be beneficial for processing larger sample volumes, particularly for environmental waters containing low concentrations of viruses. This study offers valuable insights into the application of the AE method for virus recovery from wastewater, which is essential for monitoring and tracking infectious diseases in communities.


Assuntos
COVID-19 , Vírus , Humanos , Águas Residuárias , SARS-CoV-2/genética , Pandemias , Adsorção , Vigilância Epidemiológica Baseada em Águas Residuárias , RNA , RNA Viral
7.
Sci Total Environ ; 876: 162689, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898534

RESUMO

Microbial contamination deteriorates source water quality, posing a severe problem for drinking water suppliers worldwide and addressed by the Water Safety Plan framework to ensure high-quality and reliable drinking water. Microbial source tracking (MST) is used to examine different microbial pollution sources via host-specific intestinal markers for humans and different types of animals. However, the application of MST in tropical surface water catchments that provide raw water for drinking water supplies is limited. We analyzed a set of MST markers, namely, three cultivable bacteriophages and four molecular PCR and qPCR assays, together with 17 microbial and physicochemical parameters, to identify fecal pollution from general, human-, swine-, and cattle-specific sources. Seventy-two river water samples at six sampling sites were collected over 12 sampling events during wet and dry seasons. We found persistent fecal contamination via the general fecal marker GenBac3 (100 % detection; 2.10-5.42 log10 copies/100 mL), with humans (crAssphage; 74 % detection; 1.62-3.81 log10 copies/100 mL) and swine (Pig-2-Bac; 25 % detection; 1.92-2.91 log10 copies/100 mL). Higher contamination levels were observed during the wet season (p < 0.05). The conventional PCR screening used for the general and human markers showed 94.4 % and 69.8 % agreement with the respective qPCR results. Specifically, in the studied watershed, coliphage could be a screening parameter for the crAssphage marker (90.6 % and 73.7 % positive and negative predictive values; Spearman's rank correlation coefficient = 0.66; p < 0.001). The likelihood of detecting the crAssphage marker significantly increased when total and fecal coliforms exceeded 20,000 and 4000 MPN/100 mL, respectively, as Thailand Surface Water Quality Standards, with odds ratios and 95 % confidence intervals of 15.75 (4.43-55.98) and 5.65 (1.39-23.05). Our study confirms the potential benefits of incorporating MST monitoring into water safety plans, supporting the use of this approach to ensure high-quality drinking water supplies worldwide.


Assuntos
Água Potável , Monitoramento Ambiental , Humanos , Animais , Bovinos , Suínos , Monitoramento Ambiental/métodos , Água Potável/análise , Poluição da Água/análise , Qualidade da Água , Água Doce/análise , Fezes/química , Microbiologia da Água
8.
Sci Total Environ ; 860: 160317, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36436629

RESUMO

Wastewater-based epidemiology (WBE) complements the clinical surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants' distribution in populations. Many developed nations have established national and regional WBE systems; however, governance and budget constraints could be obstacles for low- and middle-income countries. An urgent need thus exists to identify hotspots to serve as sentinel sites for WBE. We hypothesized that representative wastewater treatment plants (WWTPs) in two international gateway cities, Bangkok and Phuket, Thailand, could be sentineled for SARS-CoV-2 and its variants to reflect the clinical distribution patterns at city level and serve as early indicators of new variants entering the country. Municipal wastewater samples (n = 132) were collected from eight representative municipal WWTPs in Bangkok and Phuket during 19 sampling events from October 2021 to March 2022, which were tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using the US CDC N1 and N2 multiplex and variant (Alpha, Delta, and Omicron BA.1 and BA.2) singleplex assays. The variant detection ratios from Bangkok and Phuket followed similar trends to the national clinical testing data, and each variant's viral loads agreed with the daily new cases (3-d moving average). Omicron BA.1 was detected in Phuket wastewater prior to Bangkok, possibly due to Phuket's WWTPs serving tourist communities. We found that the Omicron BA.1 and BA.2 viral loads predominantly drove the SARS-CoV-2 resurgence. We also noted a shifting pattern in the Bangkok WBE from a 22-d early warning in early 2021 to a near real-time pattern in late 2021. The potential application of tourist hotspots for WBE to indicate the arrival of new variants and re-emerging or unprecedented infectious agents could support tourism-dependent economies by complementing the reduced clinical regulations while maintaining public health protection via wastewater surveillance.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Cidades , SARS-CoV-2/genética , Tailândia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
9.
Sci Total Environ ; 864: 161023, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36539100

RESUMO

The early warning and tracking of COVID-19 prevalence in the community provided by wastewater surveillance has highlighted its potential for much broader viral disease surveillance. In this proof-of-concept study, 46 wastewater samples from four wastewater treatment plants (WWTPs) in Queensland, Australia, were analyzed for the presence and abundance of 13 respiratory viruses, and the results were compared with reported clinical cases. The viruses were concentrated using the adsorption-extraction (AE) method, and extracted nucleic acids were analyzed using qPCR and RT-qPCR. Among the viruses tested, bocavirus (BoV), parechovirus (PeV), rhinovirus A (RhV A) and rhinovirus B (RhV B) were detected in all wastewater samples. All the tested viruses except influenza B virus (IBV) were detected in wastewater sample from at least one WWTP. BoV was detected with the greatest concentration (4.96-7.22 log10 GC/L), followed by Epstein-Barr virus (EBV) (4.08-6.46 log10 GC/L), RhV A (3.95-5.63 log10 GC/L), RhV B (3.74-5.61 log10 GC/L), and PeV (3.17-5.32 log10 GC/L). Influenza viruses and respiratory syncytial virus (RSV) are notifiable conditions in Queensland, allowing the gene copy (GC) concentrations to be compared with reported clinical cases. Significant correlations (ρ = 0.60, p < 0.01 for IAV and ρ = 0.53, p < 0.01 for RSV) were observed when pooled wastewater influenza A virus (IAV) and RSV log10 GC/L concentrations were compared to log10 clinical cases among the four WWTP catchments. The positive predictive value for the presence of IAV and RSV in wastewater was 97 % for both IAV and RSV clinical cases within the four WWTP catchments. The overall accuracy of wastewater analysis for predicting clinical cases of IAV and RSV was 97 and 90 %, respectively. This paper lends credibility to the application of wastewater surveillance to monitor respiratory viruses of various genomic characteristics, with potential uses for increased surveillance capabilities and as a tool in understanding the dynamics of disease circulation in the communities.


Assuntos
COVID-19 , Infecções por Vírus Epstein-Barr , Influenza Humana , Humanos , Águas Residuárias , Queensland/epidemiologia , Herpesvirus Humano 4 , Vigilância Epidemiológica Baseada em Águas Residuárias , Vírus Sinciciais Respiratórios/genética , Vírus da Influenza B/genética , Austrália , Influenza Humana/epidemiologia
10.
ISME Commun ; 2(1): 107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338866

RESUMO

The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them-the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.

11.
J Water Health ; 20(2): 300-313, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36366988

RESUMO

Public toilets may increase the risk of COVID-19 infection via airborne transmission; however, related research is limited. We aimed to estimate SARS-CoV-2 infection risk through respiratory transmission using a quantitative microbial risk assessment framework by retrieving SARS-CoV-2 concentrations from the swab tests of 251 Thai patients. Three virus-generating scenarios were investigated: an infector breathing, breathing with a cough, and breathing with a sneeze. The infection risk (95th percentile) was as high as 10-1 with breathing and increased to 1 with a cough or a sneeze. No significant gender differences for toilet users (receptors) were noted. The highest risk scenario, namely breathing with a sneeze, was further evaluated for risk mitigation measures. Mitigation to a lower risk under 10-3 succeeded only when the infector and the receptor both wore N95 respirators or surgical masks. Ventilation of up to 20 air changes per hour (ACH) did not decrease the risk. However, an extended waiting time of 10 min between an infector and a receptor resulted in approximately 1.0-log10 further risk reduction when both wore masks with the WHO-recommended 12 ACH. The volume of expelled droplets, virus concentrations, and receptor dwell time were identified as the main contributors to transmission risk.


Assuntos
COVID-19 , Máscaras , Humanos , Aparelho Sanitário , Tosse , COVID-19/prevenção & controle , Medição de Risco , SARS-CoV-2 , Saúde Pública , Tailândia , Controle de Doenças Transmissíveis
12.
Sci Total Environ ; 848: 157652, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35905960

RESUMO

Water commuting is a major urban transportation method in Thailand. However, urban boat commuters risk exposure to microbially contaminated bioaerosols or splash. We aimed to investigate the microbial community structures, identify bacterial and viral pathogens, and assess the abundance of antimicrobial resistance genes (ARGs) using next-generation sequencing (NGS) at 10 sampling sites along an 18 km transportation boat route in the Saen Saep Canal, which traverses cultural, commercial, and suburban land-based zones. The shotgun metagenomic (Illumina HiSeq) and 16S rRNA gene amplicon (V4 region) (Illumina MiSeq) sequencing platforms revealed diverse microbial clusters aligned with the zones, with explicit segregation between the cultural and suburban sites. The shotgun metagenomic sequencing further identified bacterial and viral pathogens, and ARGs. The predominant bacterial pathogens (>0.5 % relative abundance) were the Burkholderia cepacia complex, Arcobacter butzleri, Burkholderia vietnamiensis, Klebsiella pneumoniae, and the Enterobacter cloacae complex. The viruses (0.28 %-0.67 % abundance in all microbial sequences) comprised mainly vertebrate viruses and bacteriophages, with encephalomyocarditis virus (33.3 %-58.2 % abundance in viral sequences), hepatitis C virus genotype 1, human alphaherpesvirus 1, and human betaherpesvirus 6A among the human viral pathogens. The 15 ARG types contained 611 ARG subtypes, including those resistant to beta-lactam, which was the most diverse and abundant group (206 subtypes; 17.0 %-27.5 %), aminoglycoside (94 subtypes; 9.6 %-15.3 %), tetracycline (80 subtypes; 15.6 %-20.2 %), and macrolide (79 subtypes; 14.5 %-32.1 %). Interestingly, the abundance of ARGs associated with resistance to beta-lactam, trimethoprim, and sulphonamide, as well as A. butzleri and crAssphage, at the cultural sites was significantly different from the other sites (p < 0.05). We demonstrated the benefits of using NGS to deliver insights into microbial communities, and antimicrobial resistance, both of which pose a risk to human health. Using NGS may facilitate microbial risk mitigation and management for urban water commuters and proximal residents.


Assuntos
Antibacterianos , Bacteriófagos , Aminoglicosídeos , Antibacterianos/farmacologia , Bactérias , Bacteriófagos/genética , Farmacorresistência Bacteriana/genética , Humanos , Macrolídeos , Metagenômica , RNA Ribossômico 16S/genética , Sulfonamidas , Tetraciclina , Meios de Transporte , Trimetoprima , Água , beta-Lactamas
13.
Microbiol Res ; 263: 127112, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35810656

RESUMO

TriR serves as a repressor for a resistance-nodulation-cell division (RND) efflux pump TriABC involved in triclosan (TCS) resistance in Agrobacterium tumefaciens. The triR gene is transcribed divergently from the triABC operon. TriR specifically bound to the triR-triA intergenic region, at an imperfect 10 bp inverted repeat, 5'-TTGACTAttC-GgtTAGTCAA-3' (TriR box), that was revealed by DNase I footprinting and electrophoretic mobility shift assay. TCS treatment appeared to up-regulate triR and triABC expression, via preventing TriR binding to the triR-triA intergenic region. Promoter-lacZ fusions and ß-galactosidase activity assay further demonstrated TriR-mediated repression of triABC and triR autoregulation. Site-directed mutagenesis confirmed the identified TriR box is essential for TriR repression. A. tumefaciens mutant strains disrupting either triR or triA were constructed to determine their biological functions. The triA mutant showed hypersensitivity to TCS and sodium dodecyl sulfate (SDS), whereas the triR mutant was hyper-resistant, compared to wild-type. In addition to TCS and SDS, overproduction of TriABC from a multi-copy plasmid conferred enhanced resistance to a quaternary ammonium compound, benzalkonium chloride. Molecular modelling was able to predict the model of TriR and docking simulations were able to anticipate plausible binding interactions between TriR and TCS ligand.


Assuntos
Agrobacterium tumefaciens , Triclosan , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Intergênico , Regulação Bacteriana da Expressão Gênica , Óperon , Regiões Promotoras Genéticas , Triclosan/metabolismo , Triclosan/farmacologia
14.
J Fish Dis ; 45(5): 679-685, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35218230

RESUMO

Tilapia tilapinevirus, or Tilapia Lake Virus (TiLV), is a RNA virus associated with mass morbidity and mortality in tilapia, leading to severe economic losses for global tilapia aquaculture. In this study, we investigated the persistence of TiLV in water by spiking sterile distilled water (SDW), freshwater collected from rearing fish tanks (FW) and natural pond water (PW) at 27°C as a representative of environmental water conditions with 0.6 ml of stock virus (3.18 × 107 viral copies/ml of water). The water samples were filtered through an electronegative charge membrane and quantified using reverse transcriptase quantitative PCR at 0, 3, 5, 7, 10 and 14 days post-inoculation. The results revealed that TiLV RNA in SDW was reduced by 1.34 log10 in 14 days. A similar approximately 4 log10 removal of the virus in FW and PW was observed at 3 and 7 days, respectively. Moreover, the infectivity of TiLV was further studied; the virus lost its infectivity in E-11 cells after 1 day in SDW, FW and PW water samples, even though the virus was spiked 10 more times than in the viral persistence study. Taken together, the results could be applied to improving biosecurity practices in tilapia farms by disinfecting or resting reservoir water for at least three to five days prior to stocking tilapia, to limit the spread of TiLV.


Assuntos
Doenças dos Peixes , Vírus de RNA , Tilápia , Animais , Linhagem Celular , Água
15.
Sci Total Environ ; 809: 151169, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699826

RESUMO

Wastewater surveillance for SARS-CoV-2 RNA has been a successful indicator of COVID-19 outbreaks in populations prior to clinical testing. However, this has been mostly conducted in high-income countries, which means there is a dearth of performance investigations in low- and middle-income countries with different socio-economic settings. This study evaluated the applicability of SARS-CoV-2 RNA monitoring in wastewater (n = 132) to inform COVID-19 infection in the city of Bangkok, Thailand using CDC N1 and N2 RT-qPCR assays. Wastewater influents (n = 112) and effluents (n = 20) were collected from 19 centralized wastewater treatment plants (WWTPs) comprising four large, four medium, and 11 small WWTPs during seven sampling events from January to April 2021 prior to the third COVID-19 resurgence that was officially declared in April 2021. The CDC N1 assay showed higher detection rates and mostly lower Ct values than the CDC N2. SARS-CoV-2 RNA was first detected at the first event when new reported cases were low. Increased positive detection rates preceded an increase in the number of newly reported cases and increased over time with the reported infection incidence. Wastewater surveillance (both positive rates and viral loads) showed strongest correlation with daily new COVID-19 cases at 22-24 days lag (Spearman's Rho = 0.85-1.00). Large WWTPs (serving 432,000-580,000 of the population) exhibited similar trends of viral loads and new cases to those from all 19 WWTPs, emphasizing that routine monitoring of the four large WWTPs could provide sufficient information for the city-scale dynamics. Higher sampling frequency at fewer sites, i.e., at the four representative WWTPs, is therefore suggested especially during the subsiding period of the outbreak to indicate the prevalence of COVID-19 infection, acting as an early warning of COVID-19 resurgence.


Assuntos
COVID-19 , Purificação da Água , Humanos , RNA Viral , SARS-CoV-2 , Tailândia/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
16.
Int J Hyg Environ Health ; 238: 113859, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34655856

RESUMO

Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are pollutants of worldwide concern that threaten human health and ecosystems. Anthropogenic activities and wastewater could be ARB and ARG pollution sources; however, research on ARG abundance and microbial source tracking (MST) of contamination in tropical marine waters is limited. This study examined spatiotemporal variations of six ARGs (blaNDM, blaTEM, blaVIM, mcr-1, sul1, and tetQ) against the widely used antibiotic groups and a class 1 integron-integrase gene (intI1) at two Thai tropical recreational beaches (n = 41). Correlations between ARGs and sewage-specific MST markers (i.e., crAssphage and human polyomaviruses [HPyVs]) and fecal indicator bacteria (i.e., total coliforms, fecal coliforms, and enterococci) were also investigated. BlaTEM, intI1, sul1, and tetQ were ubiquitous at both beaches (85.4-100% detection rate); intI1 was the most abundant (3-6 orders in log10 copies/100 mL), followed by blaTEM (2-4 orders), sul1 (2-3 orders), and tetQ (2-4 orders). BlaNDM was found in 7.3% (up to 4 orders), and no mcr-1 was detected. Interestingly, blaVIM was prevalent at one beach (2-5 orders; n = 17), but found in only one sample at the other (4 orders). Temporal, but not spatial, differences were noticed; blaTEM was at higher levels in the wet season. IntI1 correlated with sul1 and tetQ (Spearman's rho = 0.47-0.97), suggesting potential horizontal gene transfer. CrAssphage, but not HPyVs, correlated with intI1, sul1, and tetQ (Spearman's rho = 0.50-0.74). Higher numbers of ARGs tended to co-occur in samples with higher crAssphage concentrations, implying sewage contribution to the marine water, with a persisting ARG background. This study provides insight into the ARG pollution status of tropical coastal waters and suggests crAssphage as a proxy for ARG pollution, which could facilitate effective management policies to minimize ARG dissemination in marine environments.


Assuntos
Resistência Microbiana a Medicamentos , Ecossistema , Esgotos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos
17.
Water Res ; 203: 117479, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34365192

RESUMO

The degradation of coastal water quality from fecal pollution poses a health risk to visitors at recreational beaches. Fecal indicator bacteria (FIB) are a proxy for fecal pollution; however the accuracy of their representation of fecal pollution health risks at recreational beaches impacted by non-point sources is disputed due to non-human derivation. This study aimed to investigate the relationship between FIB and a range of culturable and molecular-based microbial source tracking (MST) markers and pathogenic bacteria, and physicochemical parameters and rainfall. Forty-two marine water samples were collected from seven sampling stations during six events at two tourist beaches in Thailand. Both beaches were contaminated with fecal pollution as evident from the GenBac3 marker at 88%-100% detection and up to 8.71 log10 copies/100 mL. The human-specific MST marker human polyomaviruses JC and BK (HPyVs) at up to 4.33 log10 copies/100 mL with 92%-94% positive detection indicated that human sewage was likely the main contamination source. CrAssphage showed lower frequencies and concentrations; its correlations with the FIB group (i.e., total coliforms, fecal coliforms, and enterococci) and GenBac3 diminished its use as a human-specific MST marker for coastal water. Human-specific culturable AIM06 and SR14 bacteriophages and general fecal indicator coliphages also showed less sensitivity than the human-specific molecular assays. The applicability of the GenBac3 endpoint PCR assay as a lower-cost prescreening step prior to the GenBac3 qPCR assay was supported by its 100% positive predictive value, but its limited negative predictive values required subsequent qPCR confirmation. Human enteric adenovirus and Vibrio cholerae were not found in any of the samples. The HPyVs related to Vibrio parahaemolyticus, Vibrio vulnificus, and 5-d rainfall records, all of which were more prevalent and concentrated during the wet season. More monitoring is therefore recommended during wet periods. Temporal differences but no spatial differences were observed, suggesting the need for a sentinel site at each beach for routine monitoring. The exceedance of FIB water quality standards did not indicate increased prevalence or concentrations of the HPyVs or Vibrio spp. pathogen group, so the utility of FIB as an indicator of health risks at tropical beaches maybe challenged. Accurate assessment of fecal pollution by incorporating MST markers could lead to developing a more effective water quality monitoring plan to better protect human health risks in tropical recreational beaches.


Assuntos
Poluição da Água , Qualidade da Água , Bactérias , Monitoramento Ambiental , Fezes , Microbiologia da Água
18.
Front Microbiol ; 12: 647602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959110

RESUMO

Rapid economic development has caused industrial expansion into residential communities, leading to higher fecal pollution loads that could be discharged into aquatic environments. However, little is known regarding the potential microbial impact on human health. This study investigated microbial contamination from coastal industrial-residential community areas in nine sampling sites in waterways during three dry events. A general microbial source tracking (MST) marker, GenBac3, was detected in all samples from all three events, indicating continuing fecal pollution in the area, mostly from human sewage contamination. This was shown by the human-specific genetic marker crAssphage (88.9%) and human polyomavirus (HPyVs; 92.6%) detection. Enteric human adenovirus (HAdV40/41) showed three positive results only from residential sites in the first event. No spatial difference was observed for MST markers and traditional fecal indicators (total coliforms and Escherichia coli) in each event. Still, a significantly lower abundance of GenBac3, HPyVs, and total coliforms in the first sampling event was detected. Spearman's rho analysis indicated a strong correlation among certain pairs of microbial parameters. Multivariate analysis revealed two clusters of samples separated by land use type (industrial vs. residential). According to factor analysis of mixed data, the land use parameter was more associated with physicochemical parameters (i.e., salinity, conductivity, water temperature, and dissolved oxygen). A Quantitative Microbial Risk Assessment (QMRA) was then conducted to estimate the annual infection risks of HAdV40/41 for non-potable water reuse purposes using predicted concentrations from crAssphage and HPyVs. The highest risks (95th percentiles) were ranked by food crop irrigation, aquaculture, and toilet flushing, at 10-1, 10-2, and 10-3 per person per year (pppy). Required treatment levels to achieve a 10-4 pppy annual infection risk were estimated. QMRA-based water treatment scenarios were suggested, including chlorination for toilet flushing reuse and depth filtration prior to chlorination for aquaculture and food crop irrigation. Microbial monitoring combined with a QMRA could provide better insights into fecal pollution patterns and the associated risks, facilitating effective water quality management and appropriate prior treatments for water reuse.

19.
Arch Microbiol ; 203(5): 1981-1993, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33528590

RESUMO

Anthropogenically impacted urban canals represent distinct freshwater ecosystems that could shape microbial communities in underlying sediments; however, knowledge of the relationships between environmental factors and microbial community compositions and their functions in such an environment is limited. This study characterized the microbial community compositions of malodorous canal sediments at six locations along the Saen Saep Canal in Thailand. 16S rRNA gene amplicon sequencing (MiSeq, Illumina) revealed dominant genera classified as fermentative bacteria, methanogens, and sulfate-reducing bacteria (SRB), all of which emphasized anaerobic environments. SRB, as the primary producers of malodorous hydrogen sulfide, accounted for 8.2-30.4% of the total sequences. dsrB gene clone libraries further identified the SRB species. A constrained correspondence analysis demonstrated a spatial pattern of SRB that correlated with physicochemical parameters in which nitrate and sulfate in sediments were the most influencing factors. Overall, a better understanding of the SRB and other related microorganisms in canal sediments can assist in the future implementation of appropriate olfactory abatement and management methodologies in urban canals.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Microbiota , Sulfatos/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos/química , Nitratos/análise , Nitratos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Sulfatos/análise , Tailândia
20.
Water Res X ; 11: 100080, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33490943

RESUMO

Capsid integrity quantitative PCR (qPCR), a molecular detection method for infectious viruses combining azo dye pretreatment with qPCR, has been widely used in recent years; however, variations in pretreatment conditions for various virus types can limit the efficacy of specific protocols. By identifying and critically synthesizing forty-one recent peer-reviewed studies employing capsid integrity qPCR for viruses in the last decade (2009-2019) in the fields of food safety and environmental virology, we aimed to establish recommendations for the detection of infectious viruses. Intercalating dyes are effective measures of viability in PCR assays provided the viral capsid is damaged; viruses that have been inactivated by other causes, such as loss of attachment or genomic damage, are less well detected using this approach. Although optimizing specific protocols for each virus is recommended, we identify a framework for general assay conditions. These include concentrations of ethidium monoazide, propidium monoazide or its derivates between 10 and 200 µM; incubation on ice or at room temperature (20 - 25 °C) for 5-120 min; and dye activation using LED or high light (500-800 Watts) exposure for periods ranging from 5 to 20 min. These simple steps can benefit the investigation of infectious virus transmission in routine (water) monitoring settings and during viral outbreaks such as the current COVID-19 pandemic or endemic diseases like dengue fever.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...