Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 919: 174792, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35122869

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and eventually fatal lung disease with a complex etiology. Approved drugs, nintedanib and pirfenidone, modify disease progression, but IPF remains incurable and there is an urgent need for new therapies. We identified chitotriosidase (CHIT1) as new driver of fibrosis in IPF and a novel therapeutic target. We demonstrate that CHIT1 activity and expression are significantly increased in serum (3-fold) and induced sputum (4-fold) from IPF patients. In the lungs CHIT1 is expressed in a distinct subpopulation of profibrotic, disease-specific macrophages, which are only present in patients with ILDs and CHIT1 is one of the defining markers of this fibrosis-associated gene cluster. To define CHIT1 role in fibrosis, we used the therapeutic protocol of the bleomycin-induced pulmonary fibrosis mouse model. We demonstrate that in the context of chitinase induction and the macrophage-specific expression of CHIT1, this model recapitulates lung fibrosis in ILDs. Genetic inactivation of Chit1 attenuated bleomycin-induced fibrosis (decreasing the Ashcroft scoring by 28%) and decreased expression of profibrotic factors in lung tissues. Pharmacological inhibition of chitinases by OATD-01 reduced fibrosis and soluble collagen concentration. OATD-01 exhibited anti-fibrotic activity comparable to pirfenidone resulting in the reduction of the Ashcroft score by 32% and 31%, respectively. These studies provide a preclinical proof-of-concept for the antifibrotic effects of OATD-01 and establish CHIT1 as a potential new therapeutic target for IPF.


Assuntos
Hexosaminidases , Fibrose Pulmonar Idiopática , Inibidores de Proteínas Quinases , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Bleomicina , Modelos Animais de Doenças , Hexosaminidases/antagonistas & inibidores , Hexosaminidases/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Acta Parasitol ; 58(1): 112-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23377920

RESUMO

Ancylostoma ceylanicum belongs to a group of soil-transmitted helminths, which infect almost 576 mln people worldwide and are a major cause of anaemia and malnutrition. Upon contact with a permissive host, third-stage larvae (L3) residing in the environment become activated larvae (ssL3), a process associated with changes in the profile of gene expression. Ancylostoma secreted proteins (ASPs) are the major proteins secreted during larvae activation and play a crucial role in hookworm adaptation to parasitism. Here we report the cloning using RACE-PCR technique of three novel ASPs from the hookworm A. ceylanicum (Ace-asp-3, Ace-asp-4, and Ace-asp-5) and computational analysis of the protein sequences. All three proteins contain SCP (Sperm Coating Protein) domain characteristic for previously described ASP proteins. Real-time PCR analysis shows significant up-regulation of Ace-asp-3 and Ace-asp-5 expression in adult worms and correlated down-regulation in ssL3 larvae. On the other hand, expression of Ace-asp-4 was increased in ssL3 stages and decreased in adult parasites.


Assuntos
Ancylostoma/genética , Ancylostoma/metabolismo , Clonagem Molecular , DNA Complementar/genética , Proteínas de Helminto/metabolismo , Animais , DNA de Helmintos/química , DNA de Helmintos/genética , Proteínas de Helminto/genética , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...