Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Antibodies (Basel) ; 12(3)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37606435

RESUMO

Laboratory production of recombinant mammalian proteins, particularly antibodies, requires an expression pipeline assuring sufficient yield and correct folding with appropriate posttranslational modifications. Transient gene expression (TGE) in the suspension-adapted Chinese Hamster Ovary (CHO) cell lines has become the method of choice for this task. The antibodies can be secreted into the media, which facilitates subsequent purification, and can be glycosylated. However, in general, protein production in CHO cells is expensive and may provide variable outcomes, namely in laboratories without previous experience. While achievable yields may be influenced by the nucleotide sequence, there are other aspects of the process which offer space for optimization, like gene delivery method, cultivation process or expression plasmid design. Polyethylenimine (PEI)-mediated gene delivery is frequently employed as a low-cost alternative to liposome-based methods. In this work, we are proposing a TGE platform for universal medium-scale production of antibodies and other proteins in CHO cells, with a novel expression vector allowing fast and flexible cloning of new genes and secretion of translated proteins. The production cost has been further reduced using recyclable labware. Nine days after transfection, we routinely obtain milligrams of antibody Fabs or human lactoferrin in a 25 mL culture volume. Potential of the platform is established based on the production and crystallization of antibody Fabs and their complexes.

2.
Pharmaceutics ; 15(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37111542

RESUMO

Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.

3.
Front Immunol ; 13: 958581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081512

RESUMO

In addition to vaccines, there is an urgent need for supplemental antiviral therapeutics to dampen the persistent COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The transmembrane protease serine 2 (TMPRSS2), that is responsible for proteolytic priming of the SARS-CoV-2 spike protein, appears as a rational therapeutic target. Accordingly, selective inhibitors of TMPRSS2 represent potential tools for prevention and treatment of COVID-19. Previously, we identified the human milk glycoprotein lactoferrin as a natural inhibitor of plasminogen conversion to plasmin, a serine protease homologous to TMPRSS2. Here, we tested whether lactoferrin and lactoferricin, a biologically active natural peptide produced by pepsin-mediated digestion of lactoferrin, together with synthetic peptides derived from lactoferrin, were able to block TMPRSS2 and SARS-CoV-2 infection. Particularly, we revealed that both lactoferricin and the N-terminal synthetic peptide pLF1 significantly inhibited: i) proteolytic activity of TMPRSS2 and plasmin, ii) proteolytic processing of the SARS-CoV-2 spike protein, and iii) SARS-CoV-2 infection of SARS-CoV-2-permissive cells. Thus, natural and synthetic peptides derived from lactoferrin represent feasible candidates for supporting prevention and treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Lactoferrina , SARS-CoV-2 , Serina Endopeptidases , Inibidores de Serina Proteinase , Fibrinolisina , Humanos , Lactoferrina/farmacologia , Pandemias , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Glicoproteína da Espícula de Coronavírus
4.
FEBS Lett ; 596(9): 1178-1189, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322890

RESUMO

Tau protein is an intrinsically disordered protein. Its physiological state is best described as a conformational ensemble (CE) of metastable structures interconverting on the local and molecular scale. The monoclonal antibody DC39C recognizes a linear C-terminal tau epitope, and as the tau interaction partner, its binding parameters report about tau CE. Association kinetics of DC39C binding, together with crosslinking mass spectrometry, show differences in the accessibility of the C terminus in CEs of tau isoforms. Furthermore, removal of the C terminus accelerated the aggregation kinetics of three-repeat tau proteins. Our results suggest a novel mechanism of splicing-driven regulation of the tau C-terminal domain with consequences on the specific roles of tau isoforms in microtubule assembly and pathological aggregation.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas tau , Proteínas Intrinsicamente Desordenadas/química , Cinética , Conformação Proteica , Isoformas de Proteínas/metabolismo , Proteínas tau/metabolismo
5.
EBioMedicine ; 76: 103818, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35078012

RESUMO

BACKGROUND: The emergence of new SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) that harbor mutations in the viral S protein raised concern about activity of current vaccines and therapeutic antibodies. Independent studies have shown that mutant variants are partially or completely resistant against some of the therapeutic antibodies authorized for emergency use. METHODS: We employed hybridoma technology, ELISA-based and cell-based S-ACE2 interaction assays combined with authentic virus neutralization assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize the new variants of SARS-CoV-2. FINDINGS: AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). In addition, AX677 is able to bind Omicron Spike protein just like the wild type Spike. The combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. Prophylactic administration of AX290 and AX677, either individually or in combination, effectively reduced viral burden and inflammation in the lungs, and prevented disease in a mouse model of SARS-CoV-2 infection. INTERPRETATION: The virus-neutralizing properties were fully reproduced in chimeric mouse-human versions of the antibodies, which may represent a promising tool for COVID-19 therapy. FUNDING: The study was funded by AXON Neuroscience SE and AXON COVIDAX a.s.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Deriva e Deslocamento Antigênicos , Antineoplásicos Imunológicos/uso terapêutico , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Cinética , Pulmão/patologia , Camundongos , Mutação , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
6.
Cell Mol Neurobiol ; 42(1): 125-136, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32997211

RESUMO

The close relationship between Alzheimer's disease (AD) and obesity was recognized many years ago. However, complete understanding of the pathological mechanisms underlying the interactions between degeneration of CNS and fat metabolism is still missing. The leptin a key adipokine of white adipose tissue has been suggested as one of the major mediators linking the obesity and AD. Here we investigated the association between peripheral levels of leptin, general metabolic status and stage of the pathogenesis in rat transgenic model of AD. We demonstrate significantly decreased levels of plasma leptin in animals with experimentally induced progressive neurofibrillary pathology, which represents only 62.3% (P = 0.0015) of those observed in normal wild type control animals. More detailed analysis showed a strong and statistically significant inverse correlation between the load of neurofibrillary pathology and peripheral levels of leptin (r = - 0.7248, P = 0.0177). We also observed a loss of body weight during development of neurodegeneration (about 14% less than control animals, P = 0.0004) and decrease in several metabolic parameters such as glucose, insulin, triglycerides and VLDL in plasma of the transgenic animals. Our data suggest that plasma leptin could serve as a convenient peripheral biomarker for tauopathies and Alzheimer's disease. Decrease in gene expression of leptin in fat tissue and its plasma level was found as one of the consequences of experimentally induced neurodegeneration. Our data may help to design rational diagnostic and therapeutic strategies for patients suffering from Alzheimer's disease or other forms of tauopathy.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Humanos , Leptina/metabolismo , Obesidade , Ratos , Proteínas tau/metabolismo
7.
Gen Physiol Biophys ; 40(6): 479-493, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34897022

RESUMO

Intrinsically disordered proteins are flexible molecules with important physiological functions. Their mode of action often involves short segments, called linear motifs, which may exhibit distinct structural propensities. Tau is intrinsically disordered, microtubule-associated protein involved in the pathogenesis of various tauopathies. In this review we analyze the collection of 3D structures of tau local linear motifs gained from the deposited structures of tau complexes with various binding partners as well as of tau-tau complexes; determined by X-ray and electron crystallography, single-particle electron microscopy, NMR spectroscopy and molecular dynamics simulations. Insights into the partially stabilized conformations of tau linear motifs are valuable for understanding the physiological and pathological processes involving tau protein.


Assuntos
Simulação de Dinâmica Molecular , Proteínas tau , Proteínas tau/metabolismo
8.
Gen Physiol Biophys ; 40(6): 577-584, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34897029

RESUMO

Neurodegeneration is associated with hypertension and disturbance in fat metabolism. The complex interaction of neurodegenerative processes with both metabolic changes and blood pressure is still not fully elucidated. Here we demonstrate that the experimentally induced tauopathy in hypertensive transgenic animals causes significant downregulation of plasma leptin (53% of control), reduction of body weight by 11%, a 1.2-fold drop of adiposity index, and decrease in HDL cholesterol level, while the fasting glucose and insulin concentration remain unchanged. Despite of these alterations we found the leptin projection circuit including the arcuate nucleus, paraventricular nucleus in hypothalamus, and nucleus tractus solitarius in the brainstem not affected by neurofibrillary pathology. Furthermore, hypertension does not alter disturbances in leptin signalling. The presented data provide further insight into neurodegeneration-induced metabolic alterations relevant for human tauopathies.


Assuntos
Hipertensão , Tauopatias , Animais , Núcleo Arqueado do Hipotálamo , Humanos , Leptina , Modelos Teóricos
10.
Front Mol Biosci ; 8: 761227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859051

RESUMO

Tauopathies, including Alzheimer's disease (AD), are the most troublesome of all age-related chronic conditions, as there are no well-established disease-modifying therapies for their prevention and treatment. Spatio-temporal distribution of tau protein pathology correlates with cognitive decline and severity of the disease, therefore, tau protein has become an appealing target for therapy. Current knowledge of the pathological effects and significance of specific species in the tau aggregation pathway is incomplete although more and more structural and mechanistic insights are being gained using biophysical techniques. Here, we review the application of NMR to structural studies of various tau forms that appear in its aggregation process, focusing on results obtained from solid-state NMR. Furthermore, we discuss implications from these studies and their prospective contribution to the development of new tauopathy therapies.

11.
Int J Biol Macromol ; 187: 105-112, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34298044

RESUMO

Maltose binding protein (MBP) has a long history as an expression tag with the ability to increase the solubility of fused proteins. A critical step for obtaining a sufficient amount of the MBP fusion protein is purification. Commercially available amylose matrix for the affinity purification of MBP fusion proteins has two main issues: (i) low (micromolar) affinity and (ii) the limited number of uses due to the cleavage of polysaccharide matrix by the amylases, present in the crude cell extract. Here, we present a new affinity purification approach based on the protein-protein interaction. We developed the affinity matrix which contains immobilized Designed Ankyrin Repeat Protein off7 (DARPin off7) - previously identified MBP binder with nanomolar affinity. The functionality of the DARPin affinity matrix was tested on the purification of MBP-tagged green fluorescent protein and flavodoxin. The affinity purification of the MBP fusion proteins, based on the MBP-DARPin off7 interaction, enables the purification of the fusion proteins in a simple two-steps procedure. The DARPin affinity matrix - easy to construct, resistant to amylase, insensitive to maltose contamination, and reusable for multiple purification cycles - provides an alternative approach to commercially available affinity matrices for purification of proteins containing the MBP tag.


Assuntos
Cromatografia de Afinidade , Escherichia coli , Proteínas Ligantes de Maltose , Engenharia de Proteínas , Proteínas Recombinantes de Fusão , Proteínas de Repetição de Anquirina Projetadas/biossíntese , Proteínas de Repetição de Anquirina Projetadas/química , Proteínas de Repetição de Anquirina Projetadas/genética , Proteínas de Repetição de Anquirina Projetadas/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Ligantes de Maltose/biossíntese , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
12.
Front Mol Neurosci ; 13: 582488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328883

RESUMO

Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.

13.
Acta Neuropathol Commun ; 8(1): 74, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471486

RESUMO

Immunotherapies targeting pathological tau have recently emerged as a promising approach for treatment of neurodegenerative disorders. We have previously showed that the mouse antibody DC8E8 discriminates between healthy and pathological tau, reduces tau pathology in murine tauopathy models and inhibits neuronal internalization of AD tau species in vitro.Here we show, that DC8E8 and antibodies elicited against the first-in-man tau vaccine, AADvac1, which is based on the DC8E8 epitope peptide, both promote uptake of pathological tau by mouse primary microglia. IgG1 and IgG4 isotypes of AX004, the humanized versions of DC8E8, accelerate tau uptake by human primary microglia isolated from post-mortem aged and diseased brains. This promoting activity requires the presence of the Fc-domain of the antibodies.The IgG1 isotype of AX004 showed greater ability to promote tau uptake compared to the IgG4 isotype, while none of the antibody-tau complexes provoked increased pro-inflammatory activity of microglia. Our data suggest that IgG1 has better suitability for therapeutic development.


Assuntos
Vacinas contra Alzheimer/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Encefalite/imunologia , Microglia/imunologia , Proteínas tau/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Monoclonais Humanizados/metabolismo , Transporte Biológico , Células Cultivadas , Encefalite/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Adulto Jovem , Proteínas tau/metabolismo
14.
Acta Neuropathol Commun ; 7(1): 129, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391090

RESUMO

Pathologically altered tau protein is a common denominator of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Therefore, promising immunotherapeutic approaches target and eliminate extracellular pathogenic tau species, which are thought to be responsible for seeding and propagation of tau pathology. Tau isoforms in misfolded states can propagate disease pathology in a template-dependent manner, proposed to be mediated by the release and internalization of extracellular tau. Monoclonal antibody DC8E8, binding four highly homologous and independent epitopes in microtubule-binding domain (MTBD) of diseased tau, inhibits tau-tau interaction, discriminates between healthy and pathologically truncated tau and reduces tau pathology in animal model in vivo. Here, we show that DC8E8 antibody acts via extracellular mechanism and does not influence viability and physiological functions of neurons. Importantly, in vitro functional assays showed that DC8E8 recognises pathogenic tau proteins of different size and origin, and potently blocks their entry into neurons. Next, we examined the mechanisms by which mouse antibody DC8E8 and its humanized version AX004 effectively block the neuronal internalization of extracellular AD tau species. We determined a novel mode of action of a therapeutic candidate antibody, which potently inhibits neuronal internalization of AD tau species by masking of epitopes present in MTBD important for interaction with neuron surface Heparan Sulfate Proteoglycans (HSPGs). We show that interference of tau-heparane sulfate interaction with DC8E8 antibody via steric hindrance represents an efficient and important therapeutic approach halting tau propagation.


Assuntos
Anticorpos Monoclonais/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Proteoglicanas/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/administração & dosagem , Sítios de Ligação/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Sistemas de Liberação de Medicamentos/tendências , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/genética , Espaço Extracelular/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Neurônios/efeitos dos fármacos , Gravidez , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas tau/genética
15.
Biomolecules ; 9(3)2019 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884818

RESUMO

The stability and dynamics of cytoskeleton in brain nerve cells are regulated by microtubule associated proteins (MAPs), tau and MAP2. Both proteins are intrinsically disordered and involved in multiple molecular interactions important for normal physiology and pathology of chronic neurodegenerative diseases. Nuclear magnetic resonance and cryo-electron microscopy recently revealed propensities of MAPs to form transient local structures and long-range contacts in the free state, and conformations adopted in complexes with microtubules and filamentous actin, as well as in pathological aggregates. In this paper, we compare the longest, 441-residue brain isoform of tau (tau40), and a 467-residue isoform of MAP2, known as MAP2c. For both molecules, we present transient structural motifs revealed by conformational analysis of experimental data obtained for free soluble forms of the proteins. We show that many of the short sequence motifs that exhibit transient structural features are linked to functional properties, manifested by specific interactions. The transient structural motifs can be therefore classified as molecular recognition elements of tau40 and MAP2c. Their interactions are further regulated by post-translational modifications, in particular phosphorylation. The structure-function analysis also explains differences between biological activities of tau40 and MAP2c.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Animais , Humanos
16.
Acta Neuropathol Commun ; 7(1): 22, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767766

RESUMO

Tau neuronal and glial pathologies drive the clinical presentation of Alzheimer's disease and related human tauopathies. There is a growing body of evidence indicating that pathological tau species can travel from cell to cell and spread the pathology through the brain. Throughout the last decade, physiological and pathological tau have become attractive targets for AD therapies. Several therapeutic approaches have been proposed, including the inhibition of protein kinases or protein-3-O-(N-acetyl-beta-D-glucosaminyl)-L-serine/threonine Nacetylglucosaminyl hydrolase, the inhibition of tau aggregation, active and passive immunotherapies, and tau silencing by antisense oligonucleotides. New tau therapeutics, across the board, have demonstrated the ability to prevent or reduce tau lesions and improve either cognitive or motor impairment in a variety of animal models developing neurofibrillary pathology. The most advanced strategy for the treatment of human tauopathies remains immunotherapy, which has already reached the clinical stage of drug development. Tau vaccines or humanised antibodies target a variety of tau species either in the intracellular or extracellular spaces. Some of them recognise the amino-terminus or carboxy-terminus, while others display binding abilities to the proline-rich area or microtubule binding domains. The main therapeutic foci in existing clinical trials are on Alzheimer's disease, progressive supranuclear palsy and non-fluent primary progressive aphasia. Tau therapy offers a new hope for the treatment of many fatal brain disorders. First efficacy data from clinical trials will be available by the end of this decade.


Assuntos
Imunoterapia/tendências , Inibidores de Proteínas Quinases/uso terapêutico , Tauopatias/terapia , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/metabolismo , Humanos , Imunoterapia/métodos , Inibidores de Proteínas Quinases/farmacologia , Paralisia Supranuclear Progressiva/imunologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/terapia , Tauopatias/imunologia , Tauopatias/metabolismo , Proteínas tau/imunologia , Proteínas tau/metabolismo
17.
J Alzheimers Dis ; 64(s1): S535-S546, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29865059

RESUMO

Tau protein plays a major role in the pathogenesis of Alzheimer's disease. Despite many decades of intensive research, the cause of the conformational switch that leads to the remodeling of the highly flexible conformational ensemble of intrinsically disordered protein tau into insoluble filaments is still elusive. We show here that truncation of tau may play a causative role in this conformational change, as evidenced by results obtained from in vitro experiments and from transgenic animal models. This conformational change is a common denominator of pathological tau protein assemblies, and a salient drug target. The long-running research of truncated tau has led to the generation of the first active tau vaccine that has entered clinical trials.


Assuntos
Tauopatias/metabolismo , Tauopatias/terapia , Proteínas tau/metabolismo , Animais , Humanos , Conformação Proteica
18.
J Biol Chem ; 293(22): 8600-8613, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669808

RESUMO

The plasminogen system is essential for dissolution of fibrin clots, and in addition, it is involved in a wide variety of other physiological processes, including proteolytic activation of growth factors, cell migration, and removal of protein aggregates. On the other hand, uncontrolled plasminogen activation contributes to many pathological processes (e.g. tumor cells' invasion in cancer progression). Moreover, some virulent bacterial species (e.g. Streptococci or Borrelia) bind human plasminogen and hijack the host's plasminogen system to penetrate tissue barriers. Thus, the conversion of plasminogen to the active serine protease plasmin must be tightly regulated. Here, we show that human lactoferrin, an iron-binding milk glycoprotein, blocks plasminogen activation on the cell surface by direct binding to human plasminogen. We mapped the mutual binding sites to the N-terminal region of lactoferrin, encompassed also in the bioactive peptide lactoferricin, and kringle 5 of plasminogen. Finally, lactoferrin blocked tumor cell invasion in vitro and also plasminogen activation driven by Borrelia Our results explain many diverse biological properties of lactoferrin and also suggest that lactoferrin may be useful as a potential tool for therapeutic interventions to prevent both invasive malignant cells and virulent bacteria from penetrating host tissues.


Assuntos
Borrelia/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Lactoferrina/metabolismo , Plasminogênio/antagonistas & inibidores , Streptococcus/metabolismo , Movimento Celular , Células Cultivadas , Cristalografia por Raios X , Humanos , Lactoferrina/química , Lactoferrina/genética , Plasminogênio/metabolismo , Conformação Proteica
19.
J Alzheimers Dis ; 58(4): 1017-1025, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28527208

RESUMO

Animal models of neurodegeneration induced by neuronal expression of truncated tau protein emerge as an important tool for understanding the pathogenesis of human tauopathies and for therapy development. Here we highlight common features of truncated tau models and make a critical assessment of possible pitfalls in their analysis. Particularly, the amount of soluble tau oligomers, which are suspected to be neurotoxic agents participating on the spreading of pathology inside the brain, may be overestimated due to a post-lysis oxidative tau oligomerization. Using a mouse brain lysate spiked with recombinant truncated and full length tau forms, we show that tau oligomers might inadvertently be produced during the isolation procedure. This finding is further corroborated by the analysis of brain lysates originated from a mouse model expressing truncated tau variant. Our results underline the necessity of thiol-protecting conditions during the analysis of tau oligomers involved in the etiopathogenesis of various tauopathies including Alzheimer's disease.


Assuntos
Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Proteínas tau/metabolismo , Proteínas tau/toxicidade , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Doenças Neurodegenerativas/genética , Neurônios/efeitos dos fármacos , Fosforilação , Ratos , Proteínas tau/química , Proteínas tau/genética
20.
Lancet Neurol ; 16(2): 123-134, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27955995

RESUMO

BACKGROUND: Neurofibrillary pathology composed of tau protein is a main correlate of cognitive impairment in patients with Alzheimer's disease. Immunotherapy targeting pathological tau proteins is therefore a promising strategy for disease-modifying treatment of Alzheimer's disease. We have developed an active vaccine, AADvac1, against pathological tau proteins and assessed it in a phase 1 trial. METHODS: We did a first-in-man, phase 1, 12 week, randomised, double-blind, placebo-controlled study of AADvac1 with a 12 week open-label extension in patients aged 50-85 years with mild-to-moderate Alzheimer's disease at four centres in Austria. We randomly assigned patients with a computer-generated sequence in a 4:1 ratio overall to receive AADvac1 or placebo. They received three subcutaneous doses of AADvac1 or placebo from masked vaccine kits at monthly intervals, and then entered the open-label phase, in which all patients were allocated to AADvac1 treatment and received another three doses at monthly intervals. Patients, carers, and all involved with the trial were masked to treatment allocation. The primary endpoint was all-cause treatment-emergent adverse events, with separate analyses for injection site reactions and other adverse events. We include all patients who received at least one dose of AADvac1 in the safety assessment. Patients who had a positive IgG titre against the tau peptide component of AADvac1 at least once during the study were classified as responders. The first-in-man study is registered with EU Clinical Trials Register, number EudraCT 2012-003916-29, and ClinicalTrials.gov, number NCT01850238; the follow-up study, which is ongoing, is registered with EU Clinical Trials Register, number EudraCT 2013-004499-36, and ClinicalTrials.gov, number NCT02031198. FINDINGS: This study was done between June 9, 2013, and March 26, 2015. 30 patients were randomly assigned in the double-blind phase: 24 patients to the AADvac1 group and six to the placebo group. A total of 30 patients received AADvac1. Two patients withdrew because of serious adverse events. The most common adverse events were injection site reactions after administration (reported in 16 [53%] vaccinated patients [92 individual events]). No cases of meningoencephalitis or vasogenic oedema occurred after administration. One patient with pre-existing microhaemorrhages had newly occurring microhaemorrhages. Of 30 patients given AADvac1, 29 developed an IgG immune response. A geometric mean IgG antibody titre of 1:31415 was achieved. Baseline values of CD3+ CD4+ lymphocytes correlated with achieved antibody titres. INTERPRETATION: AADvac1 had a favourable safety profile and excellent immunogenicity in this first-in-man study. Further trials are needed to corroborate the safety assessment and to establish proof of clinical efficacy of AADvac1. FUNDING: AXON Neuroscience SE.


Assuntos
Doença de Alzheimer/terapia , Vacinas contra Alzheimer/farmacologia , Imunoterapia/métodos , Avaliação de Resultados em Cuidados de Saúde , Proteínas tau/imunologia , Idoso , Idoso de 80 Anos ou mais , Vacinas contra Alzheimer/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Imunoterapia/efeitos adversos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...