Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 478, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724554

RESUMO

Soil organic carbon (SOC) is a soil health indicator and understanding dynamics changing SOC stocks will help achieving net zero goals. Here we present four datasets featuring 11,750 data points covering co-located aboveground and below-ground metrics for exploring ecosystem SOC dynamics. Five sites across England with an established land use contrast, grassland and woodland next to each other, were rigorously sampled for aboveground (n = 109), surface (n = 33 soil water release curves), topsoil, and subsoil metrics. Commonly measured soil metrics were analysed in five soil increments for 0-1 metre (n = 4550). Less commonly measured soil metrics which were assumed to change across the soil profile were measured on a subset of samples only (n = 3762). Additionally, we developed a simple method for soil organic matter fractionation using density fractionation which is part of the less common metrics. Finally, soil metrics which may impact SOC dynamics, but with less confidence as to their importance across the soil profile were only measured on topsoil (~5-15 cm = mineral soil) and subsoil (below 50 cm) samples (n = 2567).


Assuntos
Carbono , Pradaria , Solo , Solo/química , Carbono/análise , Inglaterra , Florestas , Ecossistema
2.
Glob Chang Biol ; 30(1): e17086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273496

RESUMO

Plant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.


Assuntos
Ecossistema , Florestas , Árvores , Plantas , Nitrogênio
3.
Glob Chang Biol ; 30(1): e17104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273555

RESUMO

Globally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2 ) and N and P additions on grassland biodiversity, community and functional composition in P-limited grasslands. We exposed soil-turf monoliths from limestone and acidic grasslands that have received >25 years of N additions (3.5 and 14 g m-2 year-1 ) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m-2 year-1 ) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2 , N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2 -nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co-occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P-acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P-limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P-acquisition strategies or developmentally young soils with sufficient bioavailable mineral P.


Assuntos
Dióxido de Carbono , Pradaria , Dióxido de Carbono/análise , Fósforo , Plantas , Poaceae , Nitrogênio , Solo/química , Carbonato de Cálcio
4.
PLoS One ; 18(10): e0290843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792796

RESUMO

A common practice used to restore and maintain biodiversity in grasslands is to stop or decrease the use of fertilizers as they are a major cause of biodiversity loss. This practice is problematic for farmers who need fertilizers to increase forage and meet the nutritional needs of livestock. Evidence is needed that helps identify optimal fertilizer regimes that could benefit biodiversity and livestock production simultaneously over the long-term. Here, we evaluated the impact of different fertilizer regimes on indicators related to both biodiversity (plant, pollinator, leaf miners and parasitoid Shannon-Weiner diversity, bumblebee abundance, nectar productivity and forb species richness), and forage production (ash, crude protein, ruminant metabolizable energy and dry matter). To this end, we used data from a grassland restoration experiment managed under four nutrient inputs schemes for 27 years: farmyard manure (FYM; 72 kg N ha-1 yr-1), artificial nitrogen-phosphorus and potassium (NPK; 25 kg N ha-1 yr-1), FYM + NPK (97 kg N ha-1 yr-1) and no-fertilizer. Results showed strong trade-offs between biodiversity and forage production under all treatments even in applications lower than the critical load in the EU. Overall, farmyard manure was the fertilizer that optimized production and biodiversity while 97 kg N ha-1 yr-1 of fertilizer addition (FYM+NPK) had the most negative impact on biodiversity. Finally, forage from places where no fertilizer has been added for 27 years did not meet the nutritional requirements of cattle, but it did for sheep. Rethinking typical approaches of nutrient addition could lead to land management solutions suitable for biological conservation and agriculture.


Assuntos
Pradaria , Esterco , Bovinos , Animais , Ovinos , Fertilizantes , Agricultura/métodos , Biodiversidade , Nitrogênio/metabolismo , Gado/metabolismo , Fertilização , Solo
5.
Sci Total Environ ; 861: 160660, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36464051

RESUMO

Extreme weather events are increasing in frequency and magnitude with profound effects on ecosystem functioning. Further, there is now a greater likelihood that multiple extreme events are occurring within a single year. Here we investigated the effect of a single drought, flood or compound (flood + drought) extreme event on temperate grassland ecosystem processes in a field experiment. To assess system resistance and resilience, we studied changes in a wide range of above- and below-ground indicators (plant diversity and productivity, greenhouse gas emissions, soil chemical, physical and biological metrics) during the 8 week stress events and then for 2 years post-stress. We hypothesized that agricultural grasslands would have different degrees of resistance and resilience to flood and drought stress. We also investigated two alternative hypotheses that the combined flood + drought treatment would either, (A) promote ecosystem resilience through more rapid recovery of soil moisture conditions or (B) exacerbate the impact of the single flood or drought event. Our results showed that flooding had a much greater effect than drought on ecosystem processes and that the grassland was more resistant and resilient to drought than to flood. The immediate impact of flooding on all indicators was negative, especially for those related to production, and climate and water regulation. Flooding stress caused pronounced and persistent shifts in soil microbial and plant communities with large implications for nutrient cycling and long-term ecosystem function. The compound flood + drought treatment failed to show a more severe impact than the single extreme events. Rather, there was an indication of quicker recovery of soil and microbial parameters suggesting greater resilience in line with hypothesis (A). This study clearly reveals that contrasting extreme weather events differentially affect grassland ecosystem function but that concurrent events of a contrasting nature may promote ecosystem resilience to future stress.


Assuntos
Ecossistema , Clima Extremo , Pradaria , Plantas , Solo/química , Secas
6.
New Phytol ; 235(5): 2046-2053, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35622460

RESUMO

Mature temperate woodlands are commonly dominated by ectomycorrhizal trees, whereas understory plants predominantly form arbuscular mycorrhizal associations. Due to differences in plant-fungus compatibility between canopy and ground layer vegetation the 'mycorrhizal mediation hypothesis' predicts that herbaceous plant establishment may be limited by a lack of suitable mycorrhizal fungal inoculum. We examined plant species data for 103 woodlands across Great Britain recorded in 1971 and in 2000 to test whether herbaceous plant species richness was related to the proportion of arbuscular mycorrhizal woody plants. We compared the effect of mycorrhizal type with other important drivers of woodland plant species richness. We found a positive effect of the relative abundance of arbuscular mycorrhizal woody plants on herbaceous plant species richness. The size of the observed effect was smaller than that of pH. Moreover, the effect persisted over time, despite many woodlands undergoing marked successional change and increased understorey shading. This work supports the mycorrhizal mediation hypothesis in British woodlands and suggests that increased abundance of arbuscular mycorrhizal woody plants is associated with greater understory plant species richness.


Assuntos
Micorrizas , Florestas , Plantas/microbiologia , Árvores/microbiologia , Madeira
7.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210172, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491602

RESUMO

Research into pollinators in managed landscapes has recently combined approaches of pollination ecology and landscape ecology, because key stressors are likely to interact across wide areas. While laboratory and field experiments are valuable for furthering understanding, studies are required to investigate the interacting drivers of pollinator health and diversity across a broader range of landscapes and a wider array of taxa. Here, we use a network of 96 study landscapes in six topographically diverse regions of Britain, to test the combined importance of honeybee density, insecticide loadings, floral resource availability and habitat diversity to pollinator communities. We also explore the interactions between these drivers and the cover and proximity of semi-natural habitat. We found that among our four drivers, only honeybee density was positively related to wild pollinator abundance and diversity, and the positive association between abundance and floral resources depended on insecticide loadings and habitat diversity. By contrast, our exploratory models including habitat composition metrics revealed a complex suite of interactive effects. These results demonstrate that improving pollinator community composition and health is unlikely to be achieved with general resource enhancements only. Rather, local land-use context should be considered in fine-tuning pollinator management and conservation. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Agricultura , Inseticidas , Animais , Abelhas , Ecologia , Ecossistema , Polinização
8.
Environ Pollut ; 281: 117017, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33813199

RESUMO

The effects of atmospheric pollution on plant species richness (nsp) are of widespread concern. We carried out a modelling exercise to estimate how nsp in British semi-natural ecosystems responded to atmospheric deposition of nitrogen (Ndep) and sulphur (Sdep) between 1800 and 2010. We derived a simple four-parameter equation relating nsp to measured soil pH, and to net primary productivity (NPP), calculated with the N14CP ecosystem model. Parameters were estimated from a large data set (n = 1156) of species richness in four vegetation classes, unimproved grassland, dwarf shrub heath, peatland, and broadleaved woodland, obtained in 2007. The equation performed reasonably well in comparisons with independent observations of nsp. We used the equation, in combination with modelled estimates of NPP (from N14CP) and soil pH (from the CHUM-AM hydrochemical model), to calculate changes in average nsp over time at seven sites across Britain, assuming that variations in nsp were due only to variations in atmospheric deposition. At two of the sites, two vegetation classes were present, making a total of nine site/vegetation combinations. In four cases, nsp was affected about equally by pH and NPP, while in another four the effect of pH was dominant. The ninth site, a chalk grassland, was affected only by NPP, since soil pH was assumed constant. Our analysis suggests that the combination of increased NPP, due to fertilization by Ndep, and decreased soil pH, primarily due to Sdep, caused an average species loss of 39% (range 23-100%) between 1800 and the late 20th Century. The modelling suggests that in recent years nsp has begun to increase, almost entirely due to reductions in Sdep and consequent increases in soil pH, but there are also indications of recent slight recovery from the eutrophying effects of Ndep.


Assuntos
Ecossistema , Plantas , Florestas , Nitrogênio/análise , Solo
9.
PeerJ ; 9: e10632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520449

RESUMO

Estimation of the impacts of atmospheric nitrogen (N) deposition on ecosystems and biodiversity is a research imperative. Analyses of large-scale spatial gradients, where an observed response is correlated with measured or modelled deposition, have been an important source of evidence. A number of problems beset this approach. For example, if responses are spatially aggregated then treating each location as statistically independent can lead to biased confidence intervals and a greater probably of false positive results. Using methods that account for residual spatial autocorrelation, Pescott & Jitlal (2020) re-analysed two large-scale spatial gradient datasets from Britain where modelled N deposition at 5 × 5 km resolution had been previously correlated with species richness in small quadrats. They found that N deposition effects were weaker than previously demonstrated leading them to conclude that "previous estimates of Ndep impacts on richness from space-for-time substitution studies are likely to have been over-estimated". We use a simulation study to show that their conclusion is unreliable despite them recognising that an influential fraction of the residual spatially structured variation could itself be attributable to N deposition. This arises because the covariate used was modelled N deposition at 5 × 5 km resolution leaving open the possibility that measured or modelled N deposition at finer resolutions could explain more variance in the response. Explicitly treating this as spatially auto-correlated error ignores this possibility and leads directly to their unreliable conclusion. We further demonstrate the plausibility of this scenario by showing that significant variation in N deposition at the 1 km square resolution is indeed averaged at 5 × 5 km resolution. Further analyses are required to explore whether estimation of the size of the N deposition effect on plant species richness and other measures of biodiversity is indeed dependent on the accuracy and hence measurement error of the N deposition covariate. Until then the conclusions of Pescott & Jitlal (2020) should be considered premature.

10.
J Anim Ecol ; 90(2): 404-414, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33067860

RESUMO

Grassland fertilisation drives non-random plant loss resulting in areas dominated by perennial grass species. How these changes cascade through linked trophic levels, however, is not well understood. We studied how grassland fertilisation propagates change through the plant assemblage into the plant-flower-visitor, plant-leaf miner and leaf miner-parasitoid networks using a year's data collection from a long-term grassland fertiliser application experiment. Our experiment had three fertiliser treatments each applied to replicate plots 15 m2 in size: mineral fertiliser, farmyard manure, and mineral fertiliser and farmyard manure combined, along with a control of no fertiliser. The combined treatment had the most significant impact, and both plant species richness and floral abundance decreased with the addition of fertiliser. While insect species richness was unaffected by fertiliser treatment, fertilised plots had a significantly higher abundance of leaf miners and parasitoids and a significantly lower abundance of bumblebees. The plant-flower-visitor and plant-herbivore networks showed higher values of vulnerability and lower modularity with fertiliser addition, while leaf miner-parasitoid networks showed a rise in generality. The different groups of insects were impacted by fertilisers to varying degrees: while the effect on abundance was the highest for leaf miners, the vulnerability and modularity of flower-visitor networks was the most affected. The impact on the abundance of leaf miners was positive and three times higher than the impact on parasitoids, and the impact on bumblebee abundance was negative and double the magnitude of impact on flower abundance. Overall, our results show that while insect species richness was unaffected by fertilisers, network structure changed significantly as the replacement of forbs by grasses resulted in changes in relative abundance across trophic levels, with the direction of change depending on the type of network. Synthesis. By studying multiple networks simultaneously, we were able to rank the relative impact of habitat change on the different groups of species within the community. This provided a more holistic picture of the impact of agricultural intensification and provides useful information when deciding on priorities for mitigation.


Assuntos
Fertilizantes , Polinização , Animais , Abelhas , Ecossistema , Insetos , Plantas
11.
Ecol Evol ; 9(22): 12858-12868, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31788220

RESUMO

Quantitative models play an increasing role in exploring the impact of global change on biodiversity. To win credibility and trust, they need validating. We show how expert knowledge can be used to assess a large number of empirical species niche models constructed for the British vascular plant and bryophyte flora. Key outcomes were (a) scored assessments of each modeled species and niche axis combination, (b) guidance on models needing further development, (c) exploration of the trade-off between presenting more complex model summaries, which could lead to more thorough validation, versus the longer time these take to evaluate, (d) quantification of the internal consistency of expert opinion based on comparison of assessment scores made on a random subset of models evaluated by both experts. Overall, the experts assessed 39% of species and niche axis combinations to be "poor" and 61% to show a degree of reliability split between "moderate" (30%), "good" (25%), and "excellent" (6%). The two experts agreed in only 43% of cases, reaching greater consensus about poorer models and disagreeing most about models rated as better by either expert. This low agreement rate suggests that a greater number of experts is required to produce reliable assessments and to more fully understand the reasons underlying lack of consensus. While area under curve (AUC) statistics showed generally very good ability of the models to predict random hold-out samples of the data, there was no correspondence between these and the scores given by the experts and no apparent correlation between AUC and species prevalence. Crowd-sourcing further assessments by allowing web-based access to model fits is an obvious next step. To this end, we developed an online application for inspecting and evaluating the fit of each niche surface to its training data.

12.
Glob Chang Biol ; 25(12): 3996-4007, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31386782

RESUMO

Soil organic matter (SOM) is an indicator of sustainable land management as stated in the global indicator framework of the United Nations Sustainable Development Goals (SDG Indicator 15.3.1). Improved forecasting of future changes in SOM is needed to support the development of more sustainable land management under a changing climate. Current models fail to reproduce historical trends in SOM both within and during transition between ecosystems. More realistic spatio-temporal SOM dynamics require inclusion of the recent paradigm shift from SOM recalcitrance as an 'intrinsic property' to SOM persistence as an 'ecosystem interaction'. We present a soil profile, or pedon-explicit, ecosystem-scale framework for data and models of SOM distribution and dynamics which can better represent land use transitions. Ecosystem-scale drivers are integrated with pedon-scale processes in two zones of influence. In the upper vegetation zone, SOM is affected primarily by plant inputs (above- and belowground), climate, microbial activity and physical aggregation and is prone to destabilization. In the lower mineral matrix zone, SOM inputs from the vegetation zone are controlled primarily by mineral phase and chemical interactions, resulting in more favourable conditions for SOM persistence. Vegetation zone boundary conditions vary spatially at landscape scales (vegetation cover) and temporally at decadal scales (climate). Mineral matrix zone boundary conditions vary spatially at landscape scales (geology, topography) but change only slowly. The thicknesses of the two zones and their transport connectivity are dynamic and affected by plant cover, land use practices, climate and feedbacks from current SOM stock in each layer. Using this framework, we identify several areas where greater knowledge is needed to advance the emerging paradigm of SOM dynamics-improved representation of plant-derived carbon inputs, contributions of soil biota to SOM storage and effect of dynamic soil structure on SOM storage-and how this can be combined with robust and efficient soil monitoring.


Assuntos
Ecossistema , Solo , Carbono , Clima , Plantas
13.
Sci Total Environ ; 687: 929-938, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412496

RESUMO

A warming climate and expected changes in average and extreme rainfall emphasise the importance of understanding how the land surface routes and stores surface water. The availability and movement of water within an ecosystem is a fundamental control on biological and geophysical activity, and influences many climatic feedbacks. A key phenomenon influencing water infiltration into the land surface is soil hydrophobicity, or water repellency. Despite repellency dictating the speed, volume and pattern of water infiltration, there is still major uncertainty over whether this critical hydrological process is biologically or physicochemically controlled. Here we show that soil water repellency is likely driven by changes in the plant and soil microbial communities in response to environmental stressors. We carried out a field survey in the summers of 2013 to 2016 in a variety of temperate habitats ranging across arable, grassland, forest and bog sites. We found that moderate to extreme repellency occurs in 68% of soils at a national scale in temperate ecosystems, with 92% showing some repellency. Taking a systems approach, we show that a wetter climate and low nutrient availability alter plant, bacterial and fungal community structure, which in turn are associated with increased soil water repellency across a large-scale gradient of soil, vegetation and land-use. The stress tolerance of the plant community and associated changes in soil microbial communities were more closely linked to changes in repellency than soil physicochemical properties. Our results indicate that there are consistent responses to diverse ecosystem stresses that will impact plant and microbial community composition, soil properties, and hydrological behaviour. We suggest that the ability of a biological community to induce such hydrological responses will influence the resilience of the whole ecosystem to environmental stress. This highlights the crucial role of above-belowground interactions in mediating climatic feedbacks and dictating ecosystem health.


Assuntos
Plantas , Microbiologia do Solo , Solo/química , Estresse Fisiológico , Bactérias , Biota , Ecossistema , Florestas , Fungos , Hidrologia , Microbiota , Estações do Ano , Água
14.
PLoS One ; 14(4): e0215891, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31026278

RESUMO

Volunteer-based plant monitoring in the UK has focused mainly on distribution mapping; there has been less emphasis on the collection of data on plant communities and habitats. Abundance data provide different insights into ecological pattern and allow for more powerful inference when considering environmental change. Abundance monitoring for other groups of organisms is well-established in the UK, e.g. for birds and butterflies, and conservation agencies have long desired comparable schemes for plants. We describe a new citizen science scheme for the UK (the 'National Plant Monitoring Scheme'; NPMS), with the primary aim of monitoring the abundance of plants at small scales. Scheme development emphasised volunteer flexibility through scheme co-creation and feedback, whilst retaining a rigorous approach to design. Sampling frameworks, target habitats and species, field methods and power are all described. We also evaluate several outcomes of the scheme design process, including: (i) landscape-context bias in the first two years of the scheme; (ii) the ability of different sets of indicator species to capture the main ecological gradients of UK vegetation; and, (iii) species richness bias in returns relative to a professional survey. Survey rates have been promising (over 60% of squares released have been surveyed), although upland squares are under-represented. Ecological gradients present in an ordination of an independent, unbiased, national survey were well-represented by NPMS indicator species, although further filtering to an entry-level set of easily identifiable species degraded signal in an ordination axis representing succession and disturbance. Comparison with another professional survey indicated that different biases might be present at different levels of participation within the scheme. Understanding the strengths and limitations of the NPMS will guide development, increase trust in outputs, and direct efforts for maintaining volunteer interest, as well as providing a set of ideas for other countries to experiment with.


Assuntos
Monitoramento Ambiental , Plantas , Voluntários , Viés , Ecossistema , Humanos , Internet , Inquéritos e Questionários , Reino Unido
15.
Ecology ; 100(5): e02676, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30825325

RESUMO

Developing a holistic understanding of the ecosystem impacts of global change requires methods that can quantify the interactions among multiple response variables. One approach is to generate high dimensional spaces, or hypervolumes, to answer ecological questions in a multivariate context. A range of statistical methods has been applied to construct hypervolumes but have not yet been applied in the context of ecological data sets with spatial or temporal structure, for example, where the data are nested or demonstrate temporal autocorrelation. We outline an approach to account for data structure in quantifying hypervolumes based on the multivariate normal distribution by including random effects. Using simulated data, we show that failing to account for structure in data can lead to biased estimates of hypervolume properties in certain contexts. We then illustrate the utility of these "model-based hypervolumes" in providing new insights into a case study of afforestation effects on ecosystem properties where the data has a nested structure. We demonstrate that the model-based generalization allows hypervolumes to be applied to a wide range of ecological data sets and questions.


Assuntos
Ecologia , Ecossistema
16.
PLoS One ; 11(8): e0161085, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557277

RESUMO

Atmospheric nitrogen (N) deposition has had detrimental effects on species composition in a range of sensitive habitats, although N deposition can also increase agricultural productivity and carbon storage, and favours a few species considered of importance for conservation. Conservation targets are multiple, and increasingly incorporate services derived from nature as well as concepts of intrinsic value. Priorities vary. How then should changes in a set of species caused by drivers such as N deposition be assessed? We used a novel combination of qualitative semi-structured interviews and quantitative ranking to elucidate the views of conservation professionals specialising in grasslands, heathlands and mires. Although conservation management goals are varied, terrestrial habitat quality is mainly assessed by these specialists on the basis of plant species, since these are readily observed. The presence and abundance of plant species that are scarce, or have important functional roles, emerged as important criteria for judging overall habitat quality. However, species defined as 'positive indicator-species' (not particularly scarce, but distinctive for the habitat) were considered particularly important. Scarce species are by definition not always found, and the presence of functionally important species is not a sufficient indicator of site quality. Habitat quality as assessed by the key informants was rank-correlated with the number of positive indicator-species present at a site for seven of the nine habitat classes assessed. Other metrics such as species-richness or a metric of scarcity were inconsistently or not correlated with the specialists' assessments. We recommend that metrics of habitat quality used to assess N pollution impacts are based on the occurrence of, or habitat-suitability for, distinctive species. Metrics of this type are likely to be widely applicable for assessing habitat change in response to different drivers. The novel combined qualitative and quantitative approach taken to elucidate the priorities of conservation professionals could be usefully applied in other contexts.


Assuntos
Poluição do Ar/análise , Ecossistema , Monitoramento Ambiental , Algoritmos , Conservação dos Recursos Naturais , Monitoramento Ambiental/legislação & jurisprudência , Monitoramento Ambiental/métodos , Feminino , Humanos , Masculino , Modelos Teóricos , Pesquisa Qualitativa , Inquéritos e Questionários
17.
Nature ; 530(7588): 85-8, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842058

RESUMO

There is considerable concern over declines in insect pollinator communities and potential impacts on the pollination of crops and wildflowers. Among the multiple pressures facing pollinators, decreasing floral resources due to habitat loss and degradation has been suggested as a key contributing factor. However, a lack of quantitative data has hampered testing for historical changes in floral resources. Here we show that overall floral rewards can be estimated at a national scale by combining vegetation surveys and direct nectar measurements. We find evidence for substantial losses in nectar resources in England and Wales between the 1930s and 1970s; however, total nectar provision in Great Britain as a whole had stabilized by 1978, and increased from 1998 to 2007. These findings concur with trends in pollinator diversity, which declined in the mid-twentieth century but stabilized more recently. The diversity of nectar sources declined from 1978 to 1990 and thereafter in some habitats, with four plant species accounting for over 50% of national nectar provision in 2007. Calcareous grassland, broadleaved woodland and neutral grassland are the habitats that produce the greatest amount of nectar per unit area from the most diverse sources, whereas arable land is the poorest with respect to amount of nectar per unit area and diversity of nectar sources. Although agri-environment schemes add resources to arable landscapes, their national contribution is low. Owing to their large area, improved grasslands could add substantially to national nectar provision if they were managed to increase floral resource provision. This national-scale assessment of floral resource provision affords new insights into the links between plant and pollinator declines, and offers considerable opportunities for conservation.


Assuntos
Biodiversidade , Flores/química , Flores/crescimento & desenvolvimento , Néctar de Plantas/análise , Plantas/química , Plantas/classificação , Animais , Flores/classificação , Pradaria , Insetos/fisiologia , Medicago/química , Medicago/crescimento & desenvolvimento , Plantas/metabolismo , Polinização , Especificidade da Espécie , Reino Unido
18.
Glob Chang Biol ; 22(8): 2929-38, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26854892

RESUMO

The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large-scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha(-1) ) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha(-1) in surface soils (0-30 cm), and 13.7 t ha(-1) in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management.


Assuntos
Carbono/análise , Pradaria , Solo/química , Mudança Climática , Reino Unido
19.
Environ Pollut ; 208(Pt B): 879-89, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26439678

RESUMO

Nitrogen deposition is known to have major impacts on contemporary ecosystems but few studies have addressed how these impacts will develop over coming decades. We consider likely changes to British semi-natural vegetation up to the year 2030 both qualitatively, based on knowledge of species responses from experimental and gradient studies, and quantitatively, based on modelling of species relationships in national monitoring data. We used historical N deposition trends and national predictions of changing deposition to calculate cumulative deposition from 1900 to 2030. Data from the Countryside Survey (1978, 1990 and 1998) was used to parameterise models relating cumulative N deposition to Ellenberg N which were then applied to expected future deposition trends. Changes to habitat suitability for key species of grassland, heathland and bog, and broadleaved woodland to 2030 were predicted using the MultiMOVE model. In UK woodlands by 2030 there is likely to be reduced occurrence of lichens, increased grass cover and a shift towards more nitrophilic vascular plant species. In grasslands we expect changing species composition with reduced occurrence of terricolous lichens and, at least in acid grasslands, reduced species richness. In heaths and bogs we project overall reductions in species richness with decreased occurrence of terricolous lichens and some bryophytes, reduced cover of dwarf shrubs and small increases in grasses. Our study clearly suggests that changes in vegetation due to nitrogen deposition are likely to continue through coming decades.


Assuntos
Poluição do Ar/análise , Pradaria , Nitrogênio/análise , Poluição do Ar/estatística & dados numéricos , Briófitas , Ecossistema , Monitoramento Ambiental , Líquens , Plantas/classificação , Poaceae , Reino Unido
20.
Environ Pollut ; 208(Pt B): 890-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26476695

RESUMO

Nitrogen (N) deposition impacts natural and semi-natural ecosystems globally. The responses of vegetation to N deposition may, however, differ strongly between habitats and may be mediated by the form of N. Although much attention has been focused on the impact of total N deposition, the effects of reduced and oxidised N, independent of the total N deposition, have received less attention. In this paper, we present new analyses of national monitoring data in the UK to provide an extensive evaluation of whether there are differences in the effects of reduced and oxidised N deposition across eight habitat types (acid, calcareous and mesotrophic grasslands, upland and lowland heaths, bogs and mires, base-rich mires, woodlands). We analysed data from 6860 plots in the British Countryside Survey 2007 for effects of total N deposition and N form on species richness, Ellenberg N values and grass:forb ratio. Our results provide clear evidence that N deposition affects species richness in all habitats except base-rich mires, after factoring out correlated explanatory variables (climate and sulphur deposition). In addition, the form of N in deposition appears important for the biodiversity of grasslands and woodlands but not mires and heaths. Ellenberg N increased more in relation to NHx deposition than NOy deposition in all but one habitat type. Relationships between species richness and N form were habitat-specific: acid and mesotrophic grasslands appear more sensitive to NHx deposition while calcareous grasslands and woodlands appeared more responsive to NOy deposition. These relationships are likely driven by the preferences of the component plant species for oxidised or reduced forms of N, rather than by soil acidification.


Assuntos
Pradaria , Nitrogênio/análise , Poluentes do Solo/análise , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Biodiversidade , Clima , Monitoramento Ambiental , Óxidos de Nitrogênio , Poaceae/efeitos dos fármacos , Solo , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA