Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 51(7): 1583-1604, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31603587

RESUMO

Voltage-gated Ca2+ channels (VGCCs) are considered to play a key role in auditory perception and information processing within the murine inner ear and brainstem. In the past, Cav 1.3 L-type VGCCs gathered most attention as their ablation causes congenital deafness. However, isolated patch-clamp investigation and localization studies repetitively suggested that Cav 2.3 R-type VGCCs are also expressed in the cochlea and further components of the ascending auditory tract, pointing to a potential functional role of Cav 2.3 in hearing physiology. Thus, we performed auditory profiling of Cav 2.3+/+ controls, heterozygous Cav 2.3+/- mice and Cav 2.3 null mutants (Cav 2.3-/- ) using brainstem-evoked response audiometry. Interestingly, click-evoked auditory brainstem responses (ABRs) revealed increased hearing thresholds in Cav 2.3+/- mice from both genders, whereas no alterations were observed in Cav 2.3-/- mice. Similar observations were made for tone burst-related ABRs in both genders. However, Cav 2.3 ablation seemed to prevent mutant mice from total hearing loss particularly in the higher frequency range (36-42 kHz). Amplitude growth function analysis revealed, i.a., significant reduction in ABR wave WI and WIII amplitude in mutant animals. In addition, alterations in WI -WIV interwave interval were observed in female Cav 2.3+/- mice whereas absolute latencies remained unchanged. In summary, our results demonstrate that Cav 2.3 VGCCs are mandatory for physiological auditory information processing in the ascending auditory tract.


Assuntos
Audiometria de Resposta Evocada , Limiar Auditivo , Canais de Cálcio Tipo N , Potenciais Evocados Auditivos do Tronco Encefálico , Estimulação Acústica , Animais , Tronco Encefálico , Canais de Cálcio , Feminino , Masculino , Camundongos
2.
J Vis Exp ; (147)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31132044

RESUMO

Brainstem evoked response audiometry (BERA) is of central relevance in the clinical neurophysiology. As other evoked potential (EP) techniques, such as visually evoked potentials (VEPs) or somatosensory evoked potentials (SEPs), the auditory evoked potentials (AEPs) are triggered by the repetitive presentation of identical stimuli, the electroencephalographic (EEG) response of which is subsequently averaged resulting in distinct positive (p) and negative (n) deflections. In humans, both the amplitude and the latency of individual peaks can be used to characterize alterations in synchronization and conduction velocity in the underlying neuronal circuitries. Importantly, AEPs are also applied in basic and preclinical science to identify and characterize the auditory function in pharmacological and genetic animal models. Even more, animal models in combination with pharmacological testing are utilized to investigate for potential benefits in the treatment of sensorineural hearing loss (e.g., age- or noise-induced hearing deficits). Here we provide a detailed and integrative description of how to record auditory brainstem-evoked responses (ABRs) in mice using click and tone-burst application. A specific focus of this protocol is on pre-experimental animal housing, anesthesia, ABR recording, ABR filtering processes, automated wavelet-based amplitude growth function analysis, and latency detection.


Assuntos
Audiometria de Resposta Evocada , Análise de Dados , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Estimulação Acústica , Animais , Limiar Auditivo , Feminino , Audição , Masculino , Camundongos , Camundongos Mutantes , Modelos Animais , Ratos , Análise de Ondaletas
3.
Neuroscience ; 409: 81-100, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31029730

RESUMO

Voltage-gated Ca2+ channels (VGCCs) play key roles in auditory perception and information processing within the inner ear and brainstem. Pharmacological inhibition of low voltage-activated (LVA) T-type Ca2+ channels is related to both age- and noise induced hearing loss in experimental animals and may represent a promising approach to the treatment of auditory impairment of various etiologies. Within the LVA Ca2+ channel subgroup, Cav3.2 is the most prominently expressed T-type channel entity in the cochlea and auditory brainstem. Thus, we performed a complete gender specific click and tone burst based auditory brainstem response (ABR) analysis of Cav3.2+/- and Cav3.2-/- mice, including i.a. temporal progression in hearing loss, amplitude growth function and wave latency analysis as well as a cochlear qPCR based evaluation of other VGCCs transcripts. Our results, based on a self-programmed automated wavelet approach, demonstrate that both heterozygous and Cav3.2 null mutant mice exhibit age-dependent increases in hearing thresholds at 5 months of age. In addition, complex alterations in WI-IV amplitudes and latencies were detected that were not attributable to alterations in the expression of other VGCCs in the auditory tract. Our results clearly demonstrate the important physiological role of Cav3.2 VGCCs in the spatiotemporal organization of auditory processing in young adult mice and suggest potential pharmacological targets for interventions in the future.


Assuntos
Limiar Auditivo/fisiologia , Canais de Cálcio Tipo T/metabolismo , Perda Auditiva/metabolismo , Audição/fisiologia , Animais , Canais de Cálcio Tipo T/genética , Cóclea/metabolismo , Perda Auditiva/genética , Camundongos , Camundongos Knockout
4.
BMC Res Notes ; 12(1): 157, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894204

RESUMO

OBJECTIVES: Voltage-gated Ca2+ channels (VGCCs) are of central relevance in regulating Ca2+ influx into living cells. The low-voltage activated (LVA) Cav3 T-type Ca2+ channels are widely distributed throughout the brain including the peripheral auditory system and ascending auditory tract. Their exact role in auditory information processing is still not fully understood. Within the LVA subgroup, Cav3.2 T-type Ca2+ channels seem to be of special importance as qPCR revealed a steady increase in Cav3.2 transcript levels over age, e.g. in the cochlea and spiral ganglion neurons (SGN). Furthermore, pharmacological studies suggested an association between Cav3.2 expression and both age-related and noise-induced hearing loss. Given the potential functional relevance of Cav3.2 VGGCs in sensorineural hearing loss, we recorded gender specific auditory evoked brainstem responses (ABRs) upon both click and tone burst presentation. Here we present auditory brainstem response (ABR) data from Cav3.2+/+, Cav3.2+/- and Cav3.2-/- mice from both genders which are of value for researchers who want to evaluate how Cav3.2 loss affects basic auditory parameters, e.g. click and tone burst based hearing thresholds, amplitude growth function and peak latencies. DATA DESCRIPTION: Information presented here includes ABR data from age-matched female and male Cav3.2+/+, Cav3.2+/- and Cav3.2-/- mice and technical aspects of the auditory recording protocol. Data were recorded using a commercially available ABR setup from Tucker Davis Technologies Inc. (TDT). Raw data files (arf.-file format) were exported as txt.-files with free access for analysis.


Assuntos
Audiometria de Resposta Evocada/métodos , Canais de Cálcio Tipo T/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Neurossensorial/fisiopatologia , Animais , Canais de Cálcio Tipo T/deficiência , Canais de Cálcio Tipo T/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Fatores Sexuais
5.
Data Brief ; 21: 1263-1266, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456242

RESUMO

This data article provides raw auditory evoked brainstem responses (ABRs) from controls and Cav2.3 transgenics, i.e. heterozygous Cav2.3+/- and Cav2.3-/- null mutants. Gender specific ABR recordings were performed in age-matched animals under ketamine/xylazine narcosis. Data presented here include ABRs upon both click and tone burst presentation in the increasing SPL mode using a commercially available ABR setup from Tucker Davis Technologies Inc. (TDT, USA). Detailed information is provided for the sound attenuating cubicle, electrical shielding, electrode parameters, stimulus characteristics and architecture, sampling rate, filtering processes and ABR protocol application during the course of data acquisition and recording. The later are important for subsequent analysis of click and tone burst related hearing thresholds, amplitude growth function and peak latencies. Raw data are available at MENDELEY DATA, DIO: 〈DOI:10.17632/g6ygz2spzx.1〉, URL: 〈https://data.mendeley.com/datasets/g6ygz2spzx/1〉).

6.
J Vis Exp ; (121)2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28362398

RESUMO

Theta activity is generated in the septohippocampal system and can be recorded using deep intrahippocampal electrodes and implantable electroencephalography (EEG) radiotelemetry or tether system approaches. Pharmacologically, hippocampal theta is heterogeneous (see dualistic theory) and can be differentiated into type I and type II theta. These individual EEG subtypes are related to specific cognitive and behavioral states, such as arousal, exploration, learning and memory, higher integrative functions, etc. In neurodegenerative diseases such as Alzheimer's, structural and functional alterations of the septohippocampal system can result in impaired theta activity/oscillations. A standard quantitative analysis of the hippocampal EEG includes a Fast-Fourier-Transformation (FFT)-based frequency analysis. However, this procedure does not provide details about theta activity in general and highly-organized theta oscillations in particular. In order to obtain detailed information on highly-organized theta oscillations in the hippocampus, we have developed a new analytical approach. This approach allows for time- and cost-effective quantification of the duration of highly-organized theta oscillations and their frequency characteristics.


Assuntos
Eletroencefalografia/métodos , Hipocampo/fisiologia , Ritmo Teta/fisiologia , Animais , Arecolina/farmacologia , Eletrodos Implantados , Eletroencefalografia/instrumentação , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pilocarpina/farmacologia , Processamento de Sinais Assistido por Computador , Telemetria/instrumentação , Telemetria/métodos , Uretana/farmacologia
7.
Data Brief ; 12: 81-86, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28393090

RESUMO

Voltage-gated Ca2+ channels are of central relevance in mediating numerous intracellular and transcellular processes including excitation-contraction coupling, excitation secretion-coupling, hormone and neurotransmitter release and gene expression. The Cav2.3 R-type Ca2+ channel is a high-voltage activated channel which plays a crucial role in neurotransmitter release, long-term potentiation and hormone release. Furthermore, Cav2.3 R-type channels were reported to be involved in ictogenesis, epileptogenesis, fear behavior, sleep, pre-and postsynaptic integration and rhythmicity within the hippocampus. Cav3 T-type Ca2+ channels are low-voltage activated and also widely expressed throughout the brain enabling neurons to switch between different firing patterns and to modulate burst activity. Disruption of T-type Ca2+ current has been related to sleep disorders, epilepsy, Parkinson׳s disease, depression, schizophrenia and pain. Cav3.2 ablation was further attributed to elevated anxiety and hippocampal alterations resulting in impaired long-term potentiation and memory. Given the importance of Cav2.3 and Cav3.2 voltage-gated Ca2+ channels within the CNS, particularly the hippocampus, we collected gender specific microarray transcriptome data of murine hippocampal RNA probes using the Affymetrix Exon Expression Chip Mouse Gene 1.0 ST v1. Information presented here includes transcriptome data from Cav2.3+/+, Cav2.3+/-, Cav2.3-/-, Cav3.2+/+, Cav3.2+/- and Cav3.2-/- mice from both genders, the protocol and list of primers used for genotyping animals, the hippocampal RNA isolation procedure and quality controls.

8.
PLoS One ; 12(1): e0169654, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28072877

RESUMO

Alzheimer's disease (AD) is a multifactorial disorder leading to progressive memory loss and eventually death. In this study, an APPswePS1dE9 AD mouse model has been analyzed for motor cortex theta, beta and gamma frequency alterations using computerized 3D stereotaxic electrode positioning and implantable video-EEG radiotelemetry to perform long-term M1 recordings from both genders considering age, circadian rhythm and activity status of experimental animals. We previously demonstrated that APPswePS1dE9 mice exibit complex alterations in hippocampal frequency power and another recent investigation reported a global increase of alpha, beta and gamma power in APPswePS1dE9 in females of 16-17 weeks of age. In this cortical study in APPswePS1dE9 mice we did not observe any changes in theta, beta and particularly gamma power in both genders at the age of 14, 15, 18 and 19 weeks. Importantly, no activity dependence of theta, beta and gamma activity could be detected. These findings clearly point to the fact that EEG activity, particularly gamma power exhibits developmental changes and spatial distinctiveness in the APPswePS1dE9 mouse model of Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Ritmo Gama , Córtex Motor/metabolismo , Córtex Motor/fisiopatologia , Ritmo Teta , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Eletroencefalografia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
9.
Neural Plast ; 2016: 7167358, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27840743

RESUMO

Alzheimer's disease (AD) is a multifactorial disorder leading to progressive memory loss and eventually death. In this study an APPswePS1dE9 AD mouse model has been analyzed using implantable video-EEG radiotelemetry to perform long-term EEG recordings from the primary motor cortex M1 and the hippocampal CA1 region in both genders. Besides motor activity, EEG recordings were analyzed for electroencephalographic seizure activity and frequency characteristics using a Fast Fourier Transformation (FFT) based approach. Automatic seizure detection revealed severe electroencephalographic seizure activity in both M1 and CA1 deflection in APPswePS1dE9 mice with gender-specific characteristics. Frequency analysis of both surface and deep EEG recordings elicited complex age, gender, and activity dependent alterations in the theta and gamma range. Females displayed an antithetic decrease in theta (θ) and increase in gamma (γ) power at 18-19 weeks of age whereas related changes in males occurred earlier at 14 weeks of age. In females, theta (θ) and gamma (γ) power alterations predominated in the inactive state suggesting a reduction in atropine-sensitive type II theta in APPswePS1dE9 animals. Gender-specific central dysrhythmia and network alterations in APPswePS1dE9 point to a functional role in behavioral and cognitive deficits and might serve as early biomarkers for AD in the future.


Assuntos
Doença de Alzheimer/fisiopatologia , Excitabilidade Cortical/fisiologia , Hipocampo/fisiopatologia , Rede Nervosa/fisiopatologia , Ritmo Teta/fisiologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Eletroencefalografia/métodos , Feminino , Masculino , Camundongos Transgênicos , Convulsões/fisiopatologia , Caracteres Sexuais
10.
J Vis Exp ; (112)2016 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-27404845

RESUMO

Implantable EEG radiotelemetry is of central relevance in the neurological characterization of transgenic mouse models of neuropsychiatric and neurodegenerative diseases as well as epilepsies. This powerful technique does not only provide valuable insights into the underlying pathophysiological mechanisms, i.e., the etiopathogenesis of CNS related diseases, it also facilitates the development of new translational, i.e., therapeutic approaches. Whereas competing techniques that make use of recorder systems used in jackets or tethered systems suffer from their unphysiological restraining to semi-restraining character, radiotelemetric EEG recordings overcome these disadvantages. Technically, implantable EEG radiotelemetry allows for precise and highly sensitive measurement of epidural and deep, intracerebral EEGs under various physiological and pathophysiological conditions. First, we present a detailed protocol of a straight forward, successful, quick and efficient technique for epidural (surface) EEG recordings resulting in high-quality electrocorticograms. Second, we demonstrate how to implant deep, intracerebral EEG electrodes, e.g., in the hippocampus (electrohippocampogram). For both approaches, a computerized 3D stereotaxic electrode implantation system is used. The radiofrequency transmitter itself is implanted into a subcutaneous pouch in both mice and rats. Special attention also has to be paid to pre-, peri- and postoperative treatment of the experimental animals. Preoperative preparation of mice and rats, suitable anesthesia as well as postoperative treatment and pain management are described in detail.


Assuntos
Eletroencefalografia , Animais , Eletrodos Implantados , Espaço Epidural , Epilepsia , Imageamento Tridimensional , Camundongos , Ratos , Técnicas Estereotáxicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...