RESUMO
In recent years, the academic community has shown significant interest in per- or polyfluoroalkyl compounds (PFAS) due to their challenging degradation and potential health risks. Photocatalysis has been investigated for PFAS decomposition due to its environmentally friendly nature. In this study, BiOI with abundant iodine vacancies was synthesized through solvothermal and calcination methods (referred to as BiOI1-x), and was used for PFAS degradation with a low power UV light source. Compared to pure BiOI, BIOI1-x showed higher photocatalytic activity towards PFOA (perfluorooctanoic acid). Within 5 h under 5 W LED light irradiation, the degradation rate of PFOA reached 51.9 % with BiOI1-x calcined at 440 °C (No significant degradation of PFAS was observed with pure BiOI). Capture experiments, electron paramagnetic resonance spectroscopy, and electrochemical experiments revealed that the main active species in the system were photogenerated holes, followed by hydroxyl radicals. Furthermore, the presence of iodine vacancies significantly improved the efficiency of charge carrier separation and enhanced the photocatalytic performance. Finally, a hypothetical degradation pathway for PFOA in this system was suggested. This study achieved efficient degradation of PFAS under low power LED light (5 W), emphasizing its significant practical importance in terms of energy conservation.
RESUMO
Highly active mesoporous Fe-Mn-Ce catalysts with high specific surface area (SBET) were synthesized by a modified precipitation process for catalyzing toluene oxidation. The Fe0.85Mn0.1Ce0.05 catalyst presents richer surface oxygen species (OS), a higher proportion of Mn4+ and Ce4+, a higher concentration of lattice defects and oxygen vacancies, the highest Oads/Olatt ratio, and a superior low-temperature redox property compared with the Fe-Mn binary oxide and Fe2O3 and MnO2 catalysts. The properties contribute to a high catalytic activity to achieve T90% of toluene conversion at 264 °C and 185 °C with a gas hourly space velocity (GHSV) at 180,000 and 20,000 mL/(gâh), respectively. The introduction of a slight quantity of Ce and Mn onto the Fe2O3 catalyst is the key to enhancing the synergistic effect of the lattice OS and surface-adsorbed oxygen, contributing to the activation oxidation procedure of toluene. In-situ DRIFTS analysis reveals that the rich oxygen vacancy concentration of catalysts accelerates the key steps for the generation and activation of oxidized products. These catalysts with rich oxygen vacancies can efficiently diminish the accumulation of a small number of the intermediary species (phenolate, C6H5-OH) produced during the catalytic oxidation of toluene.