RESUMO
Untargeted metabolomics UHPLC-HRMS workflows typically employ narrowbore 2.1-mm inner diameter (i.d.) columns. However, the wide concentration range of the metabolome and the need to often analyze small sample amounts poses challenges to these approaches. Reducing the column diameter could be a potential solution. Herein, we evaluated the performance of a microbore 1.0-mm i.d. setup compared to the 2.1-mm i.d. benchmark for untargeted metabolomics. The 1.0-mm i.d. setup was implemented on a micro-UHPLC system, while the 2.1-mm i.d. on a standard UHPLC, both coupled to quadrupole-orbitrap HRMS. On polar standard metabolites, a sensitivity gain with an average 3.8-fold increase over the 2.1-mm i.d., along with lower LOD (LODavg 1.48 ng/mL vs. 6.18 ng/mL) and LOQ (LOQavg 4.94 ng/mL vs. 20.60 ng/mL), was observed. The microbore method detected and quantified all metabolites at LLOQ with respect to 2.1, also demonstrating good repeatability with lower CV% for retention times (0.29% vs. 0.63%) and peak areas (4.65% vs. 7.27%). The analysis of various samples, in both RP and HILIC modes, including different plasma volumes, dried blood spots (DBS), and colorectal cancer (CRC) patient-derived organoids (PDOs), in full scan-data dependent mode (FS-DDA) reported a significant increase in MS1 and MS2 features, as well as MS/MS spectral matches by 38.95%, 39.26%, and 18.23%, respectively. These findings demonstrate that 1.0-mm i.d. columns in UHPLC-HRMS could be a potential strategy to enhance coverage for low-amount samples while maintaining the same analytical throughput and robustness of 2.1-mm i.d. formats, with reduced solvent consumption.
RESUMO
BACKGROUND/AIMS: Aquaporin-3 (AQP3) is an aquaglyceroporin and peroxiporin that plays a crucial role in skin barrier homeostasis. Dysregulated AQP3 expression has been observed in different inflammatory skin conditions. Hidradenitis Suppurativa (HS) is an autoinflammatory keratinization disease that typically appears between 10 and 21 years of age, characterized by alteration of skin barrier homeostasis. METHODS: To evaluate in vitro the role of AQP3 in the development of HS, we performed real-time PCR and Western blot to analyze gene and protein levels in human keratinocyte cell lines knock-out (KO) for NCSTN and PSENEN genes, simulating genetic-associated HS. Additionally, we investigated the impact of Glyceryl Glucoside (GG) on biological processes by performing MTT, scratch, proliferation assays and proteome studies. RESULTS: We detected a significant decrease of the levels of AQP3 gene and protein in KO cell lines. GG effectively elevated the levels of mRNA and protein, significantly decreased the hyperproliferation rate, and enhanced cell migration in our in vitro model of genetic Hidradenitis Suppurativa. Pathway enrichment analysis further confirmed GG's role in the migration and proliferation pathways of keratinocytes. CONCLUSION: Our results suggest that AQP3 may act as a new novel actor in HS etio-pathogenesis, and GG could be further explored as potential treatment option for managing HS in patients.
Assuntos
Aquaporina 3 , Movimento Celular , Proliferação de Células , Glucosídeos , Hidradenite Supurativa , Queratinócitos , Humanos , Aquaporina 3/metabolismo , Aquaporina 3/genética , Hidradenite Supurativa/metabolismo , Hidradenite Supurativa/patologia , Hidradenite Supurativa/tratamento farmacológico , Hidradenite Supurativa/genética , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Queratinócitos/citologia , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Linhagem CelularRESUMO
Endoplasmic reticulum (ER) remodeling is vital for cellular organization. ER-phagy, a selective autophagy targeting ER, plays an important role in maintaining ER morphology and function. The FAM134 protein family, including FAM134A, FAM134B, and FAM134C, mediates ER-phagy. While FAM134B mutations are linked to hereditary sensory and autonomic neuropathy in humans, the physiological role of the other FAM134 proteins remains unknown. To address this, we investigate the roles of FAM134 proteins using single and combined knockouts (KOs) in mice. Single KOs in young mice show no major phenotypes; however, combined Fam134b and Fam134c deletion (Fam134b/cdKO), but not the combination including Fam134a deletion, leads to rapid neuromuscular and somatosensory degeneration, resulting in premature death. Fam134b/cdKO mice show rapid loss of motor and sensory axons in the peripheral nervous system. Long axons from Fam134b/cdKO mice exhibit expanded tubular ER with a transverse ladder-like appearance, whereas no obvious abnormalities are present in cortical ER. Our study unveils the critical roles of FAM134C and FAM134B in the formation of tubular ER network in axons of both motor and sensory neurons.
Assuntos
Axônios , Retículo Endoplasmático , Proteínas de Membrana , Animais , Humanos , Camundongos , Axônios/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos KnockoutRESUMO
INTRODUCTION: Congenital heart disease (CHD) is the most common congenital anomaly, representing a significant global disease burden. Limitations exist in our understanding of aetiology, diagnostic methodology and screening, with metabolomics offering promise in addressing these. OBJECTIVE: To evaluate maternal metabolomics and lipidomics in prediction and risk factor identification for childhood CHD. METHODS: We performed an observational study in mothers of children with CHD following pregnancy, using untargeted plasma metabolomics and lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). 190 cases (157 mothers of children with structural CHD (sCHD); 33 mothers of children with genetic CHD (gCHD)) from the children OMACp cohort and 162 controls from the ALSPAC cohort were analysed. CHD diagnoses were stratified by severity and clinical classifications. Univariate, exploratory and supervised chemometric methods were used to identify metabolites and lipids distinguishing cases and controls, alongside predictive modelling. RESULTS: 499 metabolites and lipids were annotated and used to build PLS-DA and SO-CovSel-LDA predictive models to accurately distinguish sCHD and control groups. The best performing model had an sCHD test set mean accuracy of 94.74% (sCHD test group sensitivity 93.33%; specificity 96.00%) utilising only 11 analytes. Similar test performances were seen for gCHD. Across best performing models, 37 analytes contributed to performance including amino acids, lipids, and nucleotides. CONCLUSIONS: Here, maternal metabolomic and lipidomic analysis has facilitated the development of sensitive risk prediction models classifying mothers of children with CHD. Metabolites and lipids identified offer promise for maternal risk factor profiling, and understanding of CHD pathogenesis in the future.
Assuntos
Cardiopatias Congênitas , Lipidômica , Metabolômica , Mães , Humanos , Cardiopatias Congênitas/sangue , Cardiopatias Congênitas/metabolismo , Feminino , Metabolômica/métodos , Lipidômica/métodos , Adulto , Criança , Lipídeos/sangue , Cromatografia Líquida de Alta Pressão , Metaboloma , Masculino , Gravidez , Espectrometria de Massas/métodosRESUMO
BACKGROUND: Breast cancer manifests as a heterogeneous pathology marked by complex metabolic reprogramming essential to satisfy its energy demands. Oncogenic signals boost the metabolism, modifying fatty acid synthesis and glucose use from the onset to progression and therapy resistant-forms. However, the exact contribution of metabolic dependencies during tumor evolution remains unclear. METHODS: In this study, we elucidate the connection between FASN and LDHA, pivotal metabolic genes, and their correlation with tumor grade and therapy response using datasets from public repositories. Subsequently, we evaluated the metabolic and proliferative functions upon FASN and LDHA inhibition in breast cancer models. Lastly, we integrated metabolomic and lipidomic analysis to define the contributions of metabolites, lipids, and precursors to the metabolic phenotypes. RESULTS: Collectively, our findings indicate metabolic shifts during breast cancer progression, unvealling two distinct functional energy phenotypes associated with aggressiveness and therapy response. Specifically, FASN exhibits reduced expression in advance-grade tumors and therapy-resistant forms, whereas LDHA demonstrates higher expression. Additionally, the biological and metabolic impact of blocking the enzymatic activity of FASN and LDHA was correlated with resistant conditions. CONCLUSIONS: These observations emphasize the intrinsic metabolic heterogeneity within breast cancer, thereby highlighting the relevance of metabolic interventions in the field of precision medicine.
Assuntos
Neoplasias da Mama , Ácido Graxo Sintase Tipo I , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/enzimologia , Feminino , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Lipidômica , Metabolômica , L-Lactato DesidrogenaseRESUMO
BACKGROUND: Despite extensive studies on the neurobiological correlates of traumatic brain injury (TBI), little is known about its molecular determinants on long-term consequences, such as dementia and Alzheimer's disease (AD). METHODS: Here, we carried out behavioural studies and an extensive biomolecular analysis, including inflammatory cytokines, gene expression and the combination of LC-HRMS and MALDI-MS Imaging to elucidate the targeted metabolomics and lipidomics spatiotemporal alterations of brains from wild-type and APP-SWE mice, a genetic model of AD, at the presymptomatic stage, subjected to mild TBI. RESULTS: We found that brain injury does not affect cognitive performance in APP-SWE mice. However, we detected an increase of key hallmarks of AD, including Aß1-42 levels and BACE1 expression, in the cortices of traumatized transgenic mice. Moreover, significant changes in the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), occurred, including increased levels of the endocannabinoid 2-AG in APP-SWE mice in both the cortex and hippocampus, and N-acylserotonins, detected for the first time in the brain. The gene expression of enzymes for the biosynthesis and inactivation of eCBs and eCB-like mediators, and some of their main molecular targets, also underwent significant changes. We also identified the formation of heteromers between cannabinoid 1 (CB1) and serotonergic 2A (5HT2A) receptors, whose levels increased in the cortex of APP-SWE mTBI mice, possibly contributing to the exacerbated pathophysiology of AD induced by the trauma. CONCLUSIONS: Mild TBI induces biochemical changes in AD genetically predisposed mice and the eCBome may play a role in the pathogenetic link between brain injury and neurodegenerative disorders also by interacting with the serotonergic system.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Endocanabinoides , Camundongos Transgênicos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Camundongos , Endocanabinoides/metabolismo , Disfunção Cognitiva/metabolismo , Serotonina/metabolismo , Biomarcadores/metabolismo , Masculino , Concussão Encefálica/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Sintomas Prodrômicos , Peptídeos beta-Amiloides/metabolismoAssuntos
Modelos Animais de Doenças , Doença de Fabry , Mitocôndrias Cardíacas , Fenótipo , Animais , Doença de Fabry/fisiopatologia , Doença de Fabry/genética , Doença de Fabry/patologia , Doença de Fabry/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/metabolismo , Camundongos , Masculino , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismoRESUMO
TFEB, a bHLH-leucine zipper transcription factor belonging to the MiT/TFE family, globally modulates cell metabolism by regulating autophagy and lysosomal functions. Remarkably, loss of TFEB in mice causes embryonic lethality due to severe defects in placentation associated with aberrant vascularization and resulting hypoxia. However, the molecular mechanism underlying this phenotype has remained elusive. By integrating in vivo analyses with multi-omics approaches and functional assays, we have uncovered an unprecedented function for TFEB in promoting the formation of a functional syncytiotrophoblast in the placenta. Our findings demonstrate that constitutive loss of TFEB in knock-out mice is associated with defective formation of the syncytiotrophoblast layer. Indeed, using in vitro models of syncytialization, we demonstrated that TFEB translocates into the nucleus during syncytiotrophoblast formation and binds to the promoters of crucial placental genes, including genes encoding fusogenic proteins (Syncytin-1 and Syncytin-2) and enzymes involved in steroidogenic pathways, such as CYP19A1, the rate-limiting enzyme for the synthesis of 17ß-Estradiol (E2). Conversely, TFEB depletion impairs both syncytial fusion and endocrine properties of syncytiotrophoblast, as demonstrated by a significant decrease in the secretion of placental hormones and E2 production. Notably, restoration of TFEB expression resets syncytiotrophoblast identity. Our findings identify that TFEB controls placental development and function by orchestrating both the transcriptional program underlying trophoblast fusion and the acquisition of endocrine function, which are crucial for the bioenergetic requirements of embryonic development.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Placenta , Trofoblastos , Animais , Trofoblastos/metabolismo , Trofoblastos/citologia , Feminino , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Gravidez , Placenta/metabolismo , Camundongos , Camundongos Knockout , Humanos , Placentação , Estradiol/metabolismoRESUMO
The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model. Therefore, we extended our study by investigating the interconnection between CB2 activation and neurotransmission in this experimental paradigm. To this purpose, we performed a MALDI imaging analysis on mice brains, observing that the administration of our lead compound was able to revert the effect of scopolamine on different neurotransmitter tones, such as acetylcholine, serotonin, and GABA, shedding light on important networks not fully explored, so far.
Assuntos
Canabinoides , Receptor CB2 de Canabinoide , Camundongos , Animais , Pirróis/farmacologia , Canabinoides/farmacologia , Neurotransmissores/farmacologia , Derivados da Escopolamina , Agonistas de Receptores de Canabinoides/farmacologia , Receptor CB1 de CanabinoideRESUMO
BACKGROUND: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective antidiabetic drugs with potential cardiovascular benefits. Despite their well-established role in reducing the risk of major adverse cardiovascular events (MACE), their impact on heart failure (HF) remains unclear. Therefore, our study examined the cardioprotective effects of tirzepatide (TZT), a novel glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) receptor agonist. METHODS: A three-steps approach was designed: (i) Meta-analysis investigation with the primary objective of assessing major adverse cardiovascular events (MACE) occurrence from major randomized clinical trials.; (ii) TZT effects on a human cardiac AC16 cell line exposed to normal (5 mM) and high (33 mM) glucose concentrations for 7 days. The gene expression and protein levels of primary markers related to cardiac fibrosis, hypertrophy, and calcium modulation were evaluated. (iii) In silico data from bioinformatic analyses for generating an interaction map that delineates the potential mechanism of action of TZT. RESULTS: Meta-analysis showed a reduced risk for MACE events by TZT therapy (HR was 0.59 (95% CI 0.40-0.79, Heterogeneity: r2 = 0.01, I2 = 23.45%, H2 = 1.31). In the human AC16 cardiac cell line treatment with 100 nM TZT contrasted high glucose (HG) levels increase in the expression of markers associated with fibrosis, hypertrophy, and cell death (p < 0.05 for all investigated markers). Bioinformatics analysis confirmed the interaction between the analyzed markers and the associated pathways found in AC16 cells by which TZT affects apoptosis, fibrosis, and contractility, thus reducing the risk of heart failure. CONCLUSION: Our findings indicate that TZT has beneficial effects on cardiac cells by positively modulating cardiomyocyte death, fibrosis, and hypertrophy in the presence of high glucose concentrations. This suggests that TZT may reduce the risk of diabetes-related cardiac damage, highlighting its potential as a therapeutic option for heart failure management clinical trials. Our study strongly supports the rationale behind the clinical trials currently underway, the results of which will be further investigated to gain insights into the cardiovascular safety and efficacy of TZT.
Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Polipeptídeo Inibidor Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 2 , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/prevenção & controle , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamento farmacológico , Hipertrofia , Hipoglicemiantes/farmacologia , Miócitos Cardíacos , Fibrose , Glucose , Receptor do Peptídeo Semelhante ao Glucagon 1RESUMO
Until now, the beneficial vascular properties of Hop reported in the literature have been mainly attributed to specific compound classes, such as tannins and phenolic acids. However, the potential vascular action of a Hop subfraction containing a high amount of α or ß acids remains completely understood. Therefore, this study aims to investigate the vascular effects of the entire Hop extract and to fraction the Hop extract to identify the main bioactive vascular compounds. A pressure myograph was used to perform vascular reactivity studies on mouse resistance arteries. Phytocomplex fractionation was performed on a semi-prep HPLC system and characterized by UHPLC-PDA-MS/MS coupled to mass spectrometry. Western blot analysis was performed to characterize the phosphorylation site enrolled. The entire Hop extract exerts a direct dose-dependent endothelial vascular action. The B1 subfraction, containing a high concentration of α acids, recapitulates the vascular effect of the crude extract. Its vasorelaxant action is mediated by the opening of Transient Receptor Potential Vanilloid type 4 (TRPV4), potentiated by PKCα, and subsequent involvement of endothelial small-conductance calcium-activated potassium channels (SKCa) and intermediate-conductance calcium-activated potassium channels (IKCa) that drives endothelium-dependent hyperpolarization (EDH) through heterocellular myoendothelial gap junctions (MEGJs). This is the first comprehensive investigation of the vascular function of Hop-derived α acids in resistance arteries. Overall, our data suggest that the B1 subfraction from Hop extracts, containing only α acids, has great potential to be translated into the useful armamentarium of natural bioactive compounds with cardiovascular benefits.
Assuntos
Humulus , Extratos Vegetais , Proteína Quinase C-alfa , Canais de Cátion TRPV , Vasodilatadores , Humulus/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteína Quinase C-alfa/metabolismo , Canais de Cátion TRPV/metabolismo , Camundongos , Vasodilatadores/farmacologia , Vasodilatadores/química , Masculino , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Vasodilatação/efeitos dos fármacos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Plant-derived nanovesicles (PDNVs) are a novelty in medical and agrifood environments, with several studies exploring their functions and potential applications. Among fruits, apples (sp. Malus domestica) have great potential as PDNVs source, given their widespread consumption, substantial waste production, and recognized health benefits. Notably, apple-derived nanovesicles (ADNVs) can interact with human cell lines, triggering anti-inflammatory and antioxidant responses. This work is dedicated to the comprehensive biochemical characterization of apple-derived nanovesicles (ADNVs) through proteomic and lipidomic analysis, and small RNAs sequencing. This research also aims to shed light on the underlying mechanism of action (MOA) when ADNVs interface with human cells, through observation of intracellular calcium signalling in human fibroblasts, and to tackles differences in ADNVs content when isolated from fruits derived from integrated and organic production methods cultivars. RESULTS: The ADNVs fraction is mainly composed of exocyst-positive organelles (EXPOs) and MVB-derived exosomes, identified through size and molecular markers (Exo70 and TET-3-like proteins). ADNVs' protein cargo is heterogeneous and exhibits a diverse array of functions, especially in plant's protection (favouring ABA stress-induced signalling, pathogen resistance and Reactive Oxygen Species (ROS) metabolism). Noteworthy plant miRNAs also contribute to phytoprotection. In relation with human cells lines, ADNVs elicit spikes of intracellular Ca2+ levels, utilizing the cation as second messenger, and produce an antioxidant effect. Lastly, organic samples yield a substantial increase in ADNV production and are particularly enriched in bioactive lysophospholipids. CONCLUSIONS: We have conclusively demonstrated that ADNVs confer an antioxidant effect upon human cells, through the initiation of a molecular pathway triggered by Ca2+ signalling. Within ADNVs, a plethora of bioactive proteins, small RNAs, and lipids have been identified, each possessing well-established functions within the realm of plant biology. While ADNVs predominantly function in plants, to safeguard against pathogenic agents and abiotic stressors, it is noteworthy that proteins with antioxidant power might act as antioxidants within human cells.
Assuntos
Antioxidantes , Malus , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cálcio/metabolismo , Verduras , Proteômica , Malus/metabolismo , Transdução de SinaisRESUMO
Endocrine disruptors (EDCs) are chemicals that interfere with the endocrine system. EDC exposure may contribute to the development of obesity, type 2 diabetes, and cardiovascular diseases by impacting the composition of an infant's gut microbiota during the first 1000 days of life. To explore the relationship between maternal urinary levels of Bisphenol-A and phthalates (UHPLC-MS/MS), and the composition of the infant gut microbiota (16S rDNA) at age 12 months (T3) and, retrospectively, at birth (T0), 1 month (T1), and 6 months (T2), stool samples from 20 infants breastfed at least once a day were analyzed. Metataxonomic bacteria relative abundances were correlated with EDC values. Based on median Bisphenol-A levels, infants were assigned to the over-exposed group (O, n = 8) and the low-exposed group (B, n = 12). The B-group exhibited higher gut colonization of the Ruminococcus torques group genus and the O-group showed higher abundances of Erysipelatoclostridium and Bifidobacterium breve. Additionally, infants were stratified as high-risk (HR, n = 12) or low-risk (LR, n = 8) exposure to phthalates, based on the presence of at least three phthalates with concentrations exceeding the cohort median values; no differences were observed in gut microbiota composition. A retrospective analysis of gut microbiota (T0-T2) revealed a disparity in ß-diversity between the O-group and the B-group. Considering T0-T3, the Linear Discriminant Effect Size indicated differences in certain microbes between the O-group vs. the B-group and the HR-group vs. the LR-group. Our findings support the potential role of microbial communities as biomarkers for high EDC exposure levels. Nevertheless, further investigations are required to deeply investigate this issue.
RESUMO
BACKGROUND: Several evidence demonstrated that glucagon-like peptide 1 receptor agonists (GLP1-RAs) reduce the risk of dementia in type 2 diabetes patients by improving memory, learning, and overcoming cognitive impairment. In this study, we elucidated the molecular processes underlying the protective effect of Tirzepatide (TIR), a dual glucose-dependent insulinotropic polypeptide receptor agonist (GIP-RA)/ GLP-1RA, against learning and memory disorders. METHODS: We investigated the effects of TIR on markers of neuronal growth (CREB and BDNF), apoptosis (BAX/Bcl2 ratio) differentiation (pAkt, MAP2, GAP43, and AGBL4), and insulin resistance (GLUT1, GLUT4, GLUT3 and SORBS1) in a neuroblastoma cell line (SHSY5Y) exposed to normal and high glucose concentration. The potential role on DNA methylation of genes involved in neuroprotection and epigenetic modulators of neuronal growth (miRNA 34a), apoptosis (miRNA 212), and differentiation (miRNA 29c) was also investigated. The cell proliferation was detected by measuring Ki-67 through flow cytometry. The data were analysed by SPSS IBM Version 23 or GraphPad Prism 7.0 software and expressed as the means ± SEM. Differences between the mean values were considered significant at a p-value of < 0.05. GraphPad Prism software was used for drawing figures. RESULTS: For the first time, it was highlighted: (a) the role of TIR in the activation of the pAkt/CREB/BDNF pathway and the downstream signaling cascade; (b) TIR efficacy in neuroprotection; (c) TIR counteracting of hyperglycemia and insulin resistance-related effects at the neuronal level. CONCLUSIONS: We demonstrated that TIR can ameliorate high glucose-induced neurodegeneration and overcome neuronal insulin resistance. Thus, this study provides new insight into the potential role of TIR in improving diabetes-related neuropathy.
Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Inibidor Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 2 , Resistência à Insulina , MicroRNAs , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Glicemia/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/farmacologiaRESUMO
Untargeted lipidomics, with its ability to take a snapshot of the lipidome landscape, is an important tool to highlight lipid changes in pathology or drug treatment models. One of the shortcomings of most untargeted lipidomics based on UHPLC-HRMS is the low throughput, which is not compatible with large-scale screening. In this contribution, we evaluate the application of a sub-5-min high-throughput four-dimensional trapped ion mobility mass spectrometry (HT-4D-TIMS) platform for the fast profiling of multiple complex biological matrices. Human AC-16 cells and mouse brain, liver, sclera, and feces were used as samples. By using a fast 4-min RP gradient, the implementation of TIMS allows us to differentiate coeluting isomeric and isobaric lipids, with correct precursor ion isolation, avoiding co-fragmentation and chimeric MS/MS spectra. Globally, the HT-4D-TIMS allowed us to annotate 1910 different lipid species, 1308 at the molecular level and 602 at the sum composition level, covering 58 lipid subclasses, together with quantitation capability covering more than three orders of magnitude. Notably, TIMS values were highly comparable with respect to longer LC gradients (CV% = 0.39%). These results highlight how HT-4D-TIMS-based untargeted lipidomics possess high coverage and accuracy, halving the analysis time with respect to conventional UHPLC methods, and can be used for fast and accurate untargeted analysis of complex matrices to rapidly evaluate changes of lipid metabolism in disease models or drug discovery campaigns.
Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Animais , Camundongos , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Lipidômica/métodos , Lipídeos/análise , Espectrometria de Mobilidade IônicaRESUMO
BACKGROUND: Early diagnosis of hepatocellular carcinoma (HCC) is essential towards the improvement of prognosis and patient survival. Circulating markers such as α-fetoprotein (AFP) and micro-RNAs represent useful tools but still have limitations. Identifying new markers can be fundamental to improve both diagnosis and prognosis. In this approach, we harness the potential of metabolomics and lipidomics to uncover potential signatures of HCC. METHODS: A combined untargeted metabolomics and lipidomics plasma profiling of 102 HCV-positive patients was performed by HILIC and RP-UHPLC coupled to Mass Spectrometry. Biochemical parameters of liver function (AST, ALT, GGT) and liver cancer biomarkers (AFP, CA19.9 e CEA) were evaluated by standard assays. RESULTS: HCC was characterized by an elevation of short and long-chain acylcarnitines, asymmetric dimethylarginine, methylguanine, isoleucylproline and a global reduction of lysophosphatidylcholines. A supervised PLS-DA model showed that the predictive accuracy for HCC class of metabolomics and lipidomics was superior to AFP for the test set (100.00% and 94.40% vs 55.00%). Additionally, the model was applied to HCC patients with AFP values < 20 ng/mL, and, by using only the top 20 variables selected by VIP scores achieved an Area Under Curve (AUC) performance of 0.94. CONCLUSION: These exploratory findings highlight how metabo-lipidomics enables the distinction of HCC from chronic HCV conditions. The identified biomarkers have high diagnostic potential and could represent a viable tool to support and assist in HCC diagnosis, including AFP-negative patients.
Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , alfa-Fetoproteínas , Lipidômica , Detecção Precoce de Câncer/métodos , Biomarcadores Tumorais , Hepatite C/complicações , Curva ROCRESUMO
Endometrial cancer (EC) is the most frequent gynecologic cancer in postmenopausal women. Pathogenetic mechanisms that are related to the onset and progression of the disease are largely still unknown. A multi-omics strategy can help identify altered pathways that could be targeted for improving therapeutical approaches. In this study we used a multi-omics approach on four EC cell lines for the identification of common dysregulated pathways in type 1 and 2 ECs. We analyzed proteomics and metabolomics of AN3CA, HEC1A, KLE and ISHIKAWA cell lines by mass spectrometry. The bioinformatic analysis identified 22 common pathways that are in common with both types of EC. In addition, we identified five proteins and 13 metabolites common to both types of EC. Western blotting analysis on 10 patients with type 1 and type 2 EC and 10 endometria samples confirmed the altered abundance of NPEPPS. Our multi-omics analysis identified dysregulated proteins and metabolites involved in EC tumor growth. Further studies are needed to understand the role of these molecules in EC. Our data can shed light on common pathways to better understand the mechanisms involved in the development and growth of EC, especially for the development of new therapies.
Assuntos
Neoplasias do Endométrio , Multiômica , Humanos , Feminino , Neoplasias do Endométrio/metabolismo , Metabolômica , Biologia ComputacionalRESUMO
BACKGROUND: The functional contribution of non-myocyte cardiac cells, such as inflammatory cells, in the setup of heart failure in response to doxorubicin (Dox) is recently becoming of growing interest. OBJECTIVES: The study aims to evaluate the role of macrophages in cardiac damage elicited by Dox treatment. METHODS: C57BL/6 mice were treated with one intraperitoneal injection of Dox (20 mg/kg) and followed up for 5 days by cardiac ultrasounds (CUS), histological, and flow cytometry evaluations. We also tested the impact of Dox in macrophage-depleted mice. Rat cardiomyoblasts were directly treated with Dox (D-Dox) or with a conditioned medium from cultured murine macrophages treated with Dox (M-Dox). RESULTS: In response to Dox, macrophage infiltration preceded cardiac damage. Macrophage depletion prevents Dox-induced damage, suggesting a key role of these cells in promoting cardiotoxicity. To evaluate the crosstalk between macrophages and cardiac cells in response to DOX, we compared the effects of D-Dox and M-Dox in vitro. Cell vitality was lower in cardiomyoblasts and apoptosis was higher in response to M-Dox compared with D-Dox. These events were linked to p53-induced mitochondria morphology, function, and autophagy alterations. We identify a mechanistic role of catecholamines released by Dox-activated macrophages that lead to mitochondrial apoptosis of cardiac cells through ß-AR stimulation. CONCLUSIONS: Our data indicate that crosstalk between macrophages and cardiac cells participates in cardiac damage in response to Dox.
Assuntos
Catecolaminas , Doxorrubicina , Ratos , Camundongos , Animais , Catecolaminas/metabolismo , Camundongos Endogâmicos C57BL , Doxorrubicina/efeitos adversos , Apoptose , Miócitos Cardíacos/metabolismo , Macrófagos , Estresse OxidativoRESUMO
Several studies have associated platelets (PLTs) to NSCLC prognosis. To understand the role of PLTs in immunotherapy-treated patients, we used blood samples of NSCLC patients at different TNM stage. We found that PLTs count and the expression of PD-L1 (pPD-L1) were significantly higher in NSCLC patients at Stage IV than Stage I-III and healthy subjects. The presence of high pPD-L1 was associated to upregulated genes for the extracellular matrix organization and tumor immunosuppression. When patients' survival was correlated to the levels of pPD-L1, longer survival rate was observed, but not when progression disease occurred. The in vitro stimulation of pPD-L1 with Atezolizumab induced CXCL4 release, accompanied by higher levels of TGFß at the time of drug resistance when the levels of CD16, CD32 and CD64 significantly increased. Leiden-clustering method defined the phenotype of PLTs which showed that the ezrin-radixin-moesin (ERM) family proteins, underlying the PD-L1 signalosome, were involved in high pPD-L1 and higher survival rate. These data imply that Stage IV NSCLC patients characterized by high pPD-L1 are associated with longer progression-free survival rate because the blockade of pPD-L1 by Atezolizumab avoids the exacerbation of a T cell-mediated immune-suppressive environment. pPD-L1 could be an easy-to-use clinical approach to predict ICI responsiveness.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêuticoRESUMO
BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute the gold standard treatment for type 2 diabetes mellitus (T2DM). Among them, empagliflozin (EMPA) has shown beneficial effects against heart failure. Because cardiovascular diseases (mainly diabetic cardiomyopathy) are the leading cause of death in diabetic patients, the use of EMPA could be, simultaneously, cardioprotective and antidiabetic, reducing the risk of death from cardiovascular causes and decreasing the risk of hospitalization for heart failure in T2DM patients. Interestingly, recent studies have shown that EMPA has positive benefits for people with and without diabetes. This finding broadens the scope of EMPA function beyond glucose regulation alone to include a more intricate metabolic process that is, in part, still unknown. Similarly, this significantly increases the number of people with heart diseases who may be eligible for EMPA treatment. METHODS: This study aimed to clarify the metabolic effect of EMPA on the human myocardial cell model by using orthogonal metabolomics, lipidomics, and proteomics approaches. The untargeted and multivariate analysis mimicked the fasting blood sugar level of T2DM patients (hyperglycemia: HG) and in the average blood sugar range (normal glucose: NG), with and without the addition of EMPA. RESULTS: Results highlighted that EMPA was able to modulate and partially restore the levels of multiple metabolites associated with cellular stress, which were dysregulated in the HG conditions, such as nicotinamide mononucleotide, glucose-6-phosphate, lactic acid, FA 22:6 as well as nucleotide sugars and purine/pyrimidines. Additionally, EMPA regulated the levels of several lipid sub-classes, in particular dihydroceramide and triacylglycerols, which tend to accumulate in HG conditions resulting in lipotoxicity. Finally, EMPA counteracted the dysregulation of endoplasmic reticulum-derived proteins involved in cellular stress management. CONCLUSIONS: These results could suggest an effect of EMPA on different metabolic routes, tending to rescue cardiomyocyte metabolic status towards a healthy phenotype.