Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 1253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625182

RESUMO

Horizontal gene transfer is a major driver of bacterial evolution and adaptation to environmental stresses, occurring notably via transformation of naturally competent organisms. The Deinococcus radiodurans bacterium, characterized by its extreme radioresistance, is also naturally competent. Here, we investigated the role of D. radiodurans players involved in different steps of natural transformation. First, we identified the factors (PilQ, PilD, type IV pilins, PilB, PilT, ComEC-ComEA, and ComF) involved in DNA uptake and DNA translocation across the external and cytoplasmic membranes and showed that the DNA-uptake machinery is similar to that described in the Gram negative bacterium Vibrio cholerae. Then, we studied the involvement of recombination and DNA repair proteins, RecA, RecF, RecO, DprA, and DdrB into the DNA processing steps of D. radiodurans transformation by plasmid and genomic DNA. The transformation frequency of the cells devoid of DprA, a highly conserved protein among competent species, strongly decreased but was not completely abolished whereas it was completely abolished in ΔdprA ΔrecF, ΔdprA ΔrecO, and ΔdprA ΔddrB double mutants. We propose that RecF and RecO, belonging to the recombination mediator complex, and DdrB, a specific deinococcal DNA binding protein, can replace a function played by DprA, or alternatively, act at a different step of recombination with DprA. We also demonstrated that a ΔdprA mutant is as resistant as wild type to various doses of γ-irradiation, suggesting that DprA, and potentially transformation, do not play a major role in D. radiodurans radioresistance.

2.
Sci Rep ; 9(1): 17217, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748604

RESUMO

The bacterium Deinococcus radiodurans is highly resistant to several stress conditions, such as radiation. According to several reports, manganese plays a crucial role in stress protection, and a high Mn/Fe ratio is essential in this process. However, mobilization of manganese and iron, and the role of DNA-binding-proteins-under-starved-conditions during oxidative-stress remained open questions. We used synchrotron-based X-ray fluorescence imaging at nano-resolution to follow element-relocalization upon stress, and its dependency on the presence of Dps proteins, using dps knockout mutants. We show that manganese, calcium, and phosphorus are mobilized from rich-element regions that resemble electron-dense granules towards the cytosol and the cellular membrane, in a Dps-dependent way. Moreover, iron delocalizes from the septum region to the cytoplasm affecting cell division, specifically in the septum formation. These mechanisms are orchestrated by Dps1 and Dps2, which play a crucial role in metal homeostasis, and are associated with the D. radiodurans tolerance against reactive oxygen species.


Assuntos
Proteínas de Bactérias/metabolismo , Citoproteção/efeitos dos fármacos , Deinococcus/crescimento & desenvolvimento , Ferro/metabolismo , Manganês/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Proteínas de Bactérias/genética , Deinococcus/efeitos dos fármacos , Herbicidas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
Biochim Biophys Acta Gen Subj ; 1863(1): 118-129, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308220

RESUMO

BACKGROUND: Deinococcus radiodurans R1 (DR) survives conditions of extreme desiccation, irradiation and exposure to genotoxic chemicals, due to efficient DNA breaks repair, also through Mn2+ protection of DNA repair enzymes. METHODS: Possible annotated domains of the DR1533 locus protein (Shp) were searched by bioinformatic analysis. The gene was cloned and expressed as fusion protein. Band-shift assays of Shp or the SRA and HNH domains were performed on oligonucleotides, genomic DNA from E. coli and DR. shp knock-out mutant was generated by homologous recombination with a kanamycin resistance cassette. RESULTS: DR1533 contains an N-terminal SRA domain and a C-terminal HNH motif (SRA-HNH Protein, Shp). Through its SRA domain, Shp binds double-strand oligonucleotides containing 5mC and 5hmC, but also unmethylated and mismatched cytosines in presence of Mn2+. Shp also binds to Escherichia coli dcm+ genomic DNA, and to cytosine unmethylated DR and E. coli dcm- genomic DNAs, but only in presence of Mn2+. Under these binding conditions, Shp displays DNAse activity through its HNH domain. Shp KO enhanced >100 fold the number of spontaneous mutants, whilst the treatment with DNA double strand break inducing agents enhanced up to 3-log the number of survivors. CONCLUSIONS: The SRA-HNH containing protein Shp binds to and cuts 5mC DNA, and unmethylated DNA in a Mn2+ dependent manner, and might be involved in faithful genome inheritance maintenance following DNA damage. GENERAL SIGNIFICANCE: Our results provide evidence for a potential role of DR Shp protein for genome integrity maintenance, following DNA double strand breaks induced by genotoxic agents.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , Deinococcus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Clonagem Molecular , Biologia Computacional , Citosina/metabolismo , Metilação de DNA , Reparo do DNA , DNA Bacteriano/genética , Deinococcus/genética , Farmacorresistência Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Humanos , Canamicina/química , Mutagênicos/química , Mutação , Domínios Proteicos , Ubiquitina-Proteína Ligases
4.
DNA Repair (Amst) ; 73: 144-154, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30527928

RESUMO

The Deinococcus radiodurans bacterium is one of the most radioresistant organisms known. It can repair hundreds of radiation-induced DNA double-strand breaks without loss of viability and reconstitute an intact genome through RecA-dependent and RecA-independent DNA repair pathways. Among the Deinococcus specific proteins required for radioresistance, the PprA protein was shown to play a major role for accurate chromosome segregation and cell division after completion of DNA repair. Here, we analyzed the cellular role of the deinococcal RecN protein belonging to the SMC family and, surprisingly, observed that the absence of the RecN protein suppressed the sensitivity of cells devoid of the PprA protein to γ- and UV-irradiation and to treatment with MMC or DNA gyrase inhibitors. This suppression was not observed when ΔpprA cells were devoid of SMC or SbcC, two other proteins belonging to the SMC family. The absence of RecN also alleviated the DNA segregation defects displayed by ΔpprA cells recovering from γ-irradiation. When exposed to 5 kGy γ-irradiation, ΔpprA, ΔrecN and ΔpprA ΔrecN cells repaired their DNA with a delay of about one hour, as compared to the wild type cells. After irradiation, the absence of RecN reduced recombination between chromosomal and plasmid DNA, indicating that the deinococcal RecN protein is important for recombinational repair of DNA lesions. The transformation efficiency of genomic DNA was also reduced in the absence of the RecN protein. Here, we propose a model in which RecN, via its cohesin activity, might favor recombinational repair of DNA double strand breaks. This might increase, in irradiated cells, DNA constraints with PprA protein being required to resolve them via its ability to recruit DNA gyrase and to stimulate its decatenation activity.


Assuntos
Reparo do DNA , Enzimas de Restrição do DNA/deficiência , Deinococcus/genética , Raios gama/efeitos adversos , Reparo de DNA por Recombinação/efeitos da radiação , Proteínas de Bactérias , DNA Girase , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Deinococcus/citologia , Deinococcus/enzimologia , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Mutação , Fenótipo , Tolerância a Radiação/genética , Reparo de DNA por Recombinação/genética , Inibidores da Topoisomerase II/farmacologia
5.
J Bacteriol ; 200(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29686138

RESUMO

The DNA damage response ddrI gene encodes a transcription regulator belonging to the cAMP receptor protein (CRP) family. Cells devoid of the DdrI protein exhibit a pleiotropic phenotype, including growth defects and sensitivity to DNA-damaging agents and to oxidative stress. Here, we show that the absence of the DdrI protein also confers sensitivity to heat shock treatment, and several genes involved in heat shock response were shown to be upregulated in a DdrI-dependent manner. Interestingly, expression of the Escherichia coli CRP partially compensates for the absence of the DdrI protein. Microscopic observations of ΔddrI mutant cells revealed an increased proportion of two-tetrad and anucleated cells in the population compared to the wild-type strain, indicating that DdrI is crucial for the completion of cell division and/or chromosome segregation. We show that DdrI is also involved in the megaplasmid MP1 stability and in efficient plasmid transformation by facilitating the maintenance of the incoming plasmid in the cell. The in silico prediction of putative DdrI binding sites in the D. radiodurans genome suggests that hundreds of genes, belonging to several functional groups, may be regulated by DdrI. In addition, the DdrI protein absolutely requires cAMP for in vitro binding to specific target sequences, and it acts as a dimer. All these data underline the major role of DdrI in D. radiodurans physiology under normal and stress conditions by regulating, both directly and indirectly, a cohort of genes involved in various cellular processes, including central metabolism and specific responses to diverse harmful environments.IMPORTANCEDeinococcus radiodurans has been extensively studied to elucidate the molecular mechanisms responsible for its exceptional ability to withstand lethal effects of various DNA-damaging agents. A complex network, including efficient DNA repair, protein protection against oxidation, and diverse metabolic pathways, plays a crucial role for its radioresistance. The regulatory networks orchestrating these various pathways are still missing. Our data provide new insights into the crucial contribution of the transcription factor DdrI for the D. radiodurans ability to withstand harmful conditions, including UV radiation, mitomycin C treatment, heat shock, and oxidative stress. Finally, we highlight that DdrI is also required for accurate cell division, for maintenance of plasmid replicons, and for central metabolism processes responsible for the overall cell physiology.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Deinococcus/metabolismo , Regulação Bacteriana da Expressão Gênica , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteína Receptora de AMP Cíclico/genética , Deinococcus/genética , Deinococcus/efeitos da radiação , Raios Ultravioleta
6.
PLoS One ; 12(5): e0177751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542368

RESUMO

The bacterium Deinococcus radiodurans possesses a set of Deinococcus-specific genes highly induced after DNA damage. Among them, ddrC (dr0003) was recently re-annotated, found to be in the inverse orientation and called A2G07_00380. Here, we report the first in vivo and in vitro characterization of the corrected DdrC protein to better understand its function in irradiated cells. In vivo, the ΔddrC null mutant is sensitive to high doses of UV radiation and the ddrC deletion significantly increases UV-sensitivity of ΔuvrA or ΔuvsE mutant strains. We show that the expression of the DdrC protein is induced after γ-irradiation and is under the control of the regulators, DdrO and IrrE. DdrC is rapidly recruited into the nucleoid of the irradiated cells. In vitro, we show that DdrC is able to bind single- and double-stranded DNA with a preference for the single-stranded DNA but without sequence or shape specificity and protects DNA from various nuclease attacks. DdrC also condenses DNA and promotes circularization of linear DNA. Finally, we show that the purified protein exhibits a DNA strand annealing activity. Altogether, our results suggest that DdrC is a new DNA binding protein with pleiotropic activities. It might maintain the damaged DNA fragments end to end, thus limiting their dispersion and extensive degradation after exposure to ionizing radiation. DdrC might also be an accessory protein that participates in a single strand annealing pathway whose importance in DNA repair becomes apparent when DNA is heavily damaged.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , Deinococcus/genética , Deinococcus/metabolismo , Proteínas de Bactérias/química , Reparo do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Deinococcus/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Deleção de Genes , Plasmídeos/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Raios Ultravioleta/efeitos adversos
7.
mSphere ; 1(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303692

RESUMO

PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCE D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation that are aggravated by the absence of PprA, and (iii) PprA stimulates the decatenation activity of DNA gyrase. Our results extend the knowledge of how D. radiodurans cells survive exposure to extreme doses of gamma irradiation and point out the link between DNA repair, chromosome segregation, and DNA gyrase activities in the radioresistant D. radiodurans bacterium.

8.
PLoS Genet ; 11(10): e1005636, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517555

RESUMO

The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA) pathway, strongly reduces the frequency of RecA- (and RecO-) independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation.


Assuntos
Genoma/genética , Tolerância a Radiação/genética , Recombinases Rec A/genética , Recombinação Genética/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA/genética , Deinococcus/genética , Deinococcus/efeitos da radiação , Raios gama , Genoma/efeitos da radiação , Mutação
9.
Microbiology (Reading) ; 161(12): 2410-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26385459

RESUMO

HU proteins have an important architectural role in nucleoid organization in bacteria. Compared with HU of many bacteria, HU proteins from Deinococcus species possess an N-terminal lysine-rich extension similar to the eukaryotic histone H1 C-terminal domain involved in DNA compaction. The single HU gene in Deinococcus radiodurans, encoding DrHU, is required for nucleoid compaction and cell viability. Deinococcus deserti contains three expressed HU genes, encoding DdHU1, DdHU2 and DdHU3. Here, we show that either DdHU1 or DdHU2 is essential in D. deserti. DdHU1 and DdHU2, but not DdHU3, can substitute for DrHU in D. radiodurans, indicating that DdHU3 may have a non-essential function different from DdHU1, DdHU2 and DrHU. Interestingly, the highly abundant DrHU and DdHU1 proteins, and also the less expressed DdHU2, are translated in Deinococcus from leaderless mRNAs, which lack a 5'-untranslated region and, hence, the Shine-Dalgarno sequence. Unexpectedly, cloning the DrHU or DdHU1 gene under control of a strong promoter in an expression plasmid, which results in leadered transcripts, strongly reduced the DrHU and DdHU1 protein level in D. radiodurans compared with that obtained from the natural leaderless gene. We also show that the start codon position for DrHU and DdHU1 should be reannotated, resulting in proteins that are 15 and 4 aa residues shorter than initially reported. The expression level and start codon correction were crucial for functional characterization of HU in Deinococcus.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Deinococcus/genética , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , RNA Mensageiro/genética , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Códon de Iniciação/genética , Códon de Iniciação/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Deinococcus/química , Deinococcus/metabolismo , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Alinhamento de Sequência
10.
Mol Microbiol ; 97(4): 759-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25988355

RESUMO

Processes favoring the exceptional resistance to genotoxic stress of Deinococcus radiodurans are not yet completely characterized. It was postulated that its nucleoid and chromosome(s) organization could participate in the DNA double strand break repair process. Here, we investigated the organization of chromosome 1 by localization of three chromosomal loci including oriC, Ter and a locus located in its left arm. For this purpose, we used a ParB-parS system to visualize the position of the loci before and after exposure to γ-rays. By comparing the number of fluorescent foci with the number of copies of the studied loci present in the cells measured by quantitative polymerase chain reaction (qPCR), we demonstrated that the 4-10 copies of chromosome 1 per cell are dispersed within the nucleoid before irradiation, indicating that the chromosome copies are not prealigned. Chromosome segregation is progressive but not co-ordinated, allowing each locus to be paired with its sister during part of the cell cycle. After irradiation, the nucleoid organization is modified, involving a transient alignment of the loci in the late stage of DNA repair and a delay of segregation of the Ter locus. We discuss how these events can influence DNA double strand break repair.


Assuntos
Deinococcus/genética , Deinococcus/efeitos da radiação , Proteínas de Bactérias/genética , Montagem e Desmontagem da Cromatina , Mapeamento Cromossômico , Cromossomos Bacterianos , Quebras de DNA de Cadeia Dupla , Dano ao DNA/efeitos da radiação , Reparo do DNA , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Deinococcus/citologia , Deinococcus/metabolismo , Tolerância a Radiação/fisiologia
11.
PLoS One ; 10(4): e0124358, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25884619

RESUMO

Here, we have developed an extremely efficient in vivo Tn5-based mutagenesis procedure to construct a Deinococcus radiodurans insertion mutant library subsequently screened for sensitivity to genotoxic agents such as γ and UV radiations or mitomycin C. The genes inactivated in radiosensitive mutants belong to various functional categories, including DNA repair functions, stress responses, signal transduction, membrane transport, several metabolic pathways, and genes of unknown function. Interestingly, preliminary characterization of previously undescribed radiosensitive mutants suggests the contribution of cyclic di-AMP signaling in the recovery of D. radiodurans cells from genotoxic stresses, probably by modulating several pathways involved in the overall cell response. Our analyses also point out a new transcriptional regulator belonging to the GntR family, encoded by DR0265, and a predicted RNase belonging to the newly described Y family, both contributing to the extreme radioresistance of D. radiodurans. Altogether, this work has revealed new cell responses involved either directly or indirectly in repair of various cell damage and confirmed that D. radiodurans extreme radiation resistance is determined by a multiplicity of pathways acting as a complex network.


Assuntos
Deinococcus/genética , Genes Bacterianos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Dano ao DNA , Reparo do DNA/genética , Elementos de DNA Transponíveis , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/genética , DNA Bacteriano/efeitos da radiação , Deinococcus/efeitos dos fármacos , Deinococcus/efeitos da radiação , Fosfatos de Dinucleosídeos/fisiologia , Raios gama , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Biblioteca Gênica , Redes Reguladoras de Genes , Teste de Complementação Genética , Peróxido de Hidrogênio/farmacologia , Mitomicina/farmacologia , Mutagênese Insercional , Mutação , Fases de Leitura Aberta/genética , Estresse Oxidativo , Tolerância a Radiação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Transposases/genética , Raios Ultravioleta
12.
Mol Microbiol ; 96(5): 1069-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25754115

RESUMO

Deinococcus radiodurans is known for its extreme radioresistance. Comparative genomics identified a radiation-desiccation response (RDR) regulon comprising genes that are highly induced after DNA damage and containing a conserved motif (RDRM) upstream of their coding region. We demonstrated that the RDRM sequence is involved in cis-regulation of the RDR gene ddrB in vivo. Using a transposon mutagenesis approach, we showed that, in addition to ddrO encoding a predicted RDR repressor and irrE encoding a positive regulator recently shown to cleave DdrO in Deinococcus deserti, two genes encoding α-keto-glutarate dehydrogenase subunits are involved in ddrB regulation. In wild-type cells, the DdrO cell concentration decreased transiently in an IrrE-dependent manner at early times after irradiation. Using a conditional gene inactivation system, we showed that DdrO depletion enhanced expression of three RDR proteins, consistent with the hypothesis that DdrO acts as a repressor of the RDR regulon. DdrO-depleted cells loose viability and showed morphological changes evocative of an apoptotic-like response, including membrane blebbing, defects in cell division and DNA fragmentation. We propose that DNA repair and apoptotic-like death might be two responses mediated by the same regulators, IrrE and DdrO, but differently activated depending on the persistence of IrrE-dependent DdrO cleavage.


Assuntos
Deinococcus/genética , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica , Regulon , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA , Desidratação , Deinococcus/crescimento & desenvolvimento , Deinococcus/ultraestrutura , Genômica , Complexo Cetoglutarato Desidrogenase/genética , Mutagênese , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína
13.
Proteomics ; 13(23-24): 3457-69, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24307635

RESUMO

The nucleoids of radiation-resistant Deinococcus species show a high degree of compaction maintained after ionizing irradiation. We identified proteins recruited after irradiation in nucleoids of Deinococcus radiodurans and Deinococcus deserti by means of comparative proteomics. Proteins in nucleoid-enriched fractions from unirradiated and irradiated Deinococcus were identified and semiquantified by shotgun proteomics. The ssDNA-binding protein SSB, DNA gyrase subunits GyrA and GyrB, DNA topoisomerase I, RecA recombinase, UvrA excinuclease, RecQ helicase, DdrA, DdrB, and DdrD proteins were found in significantly higher amounts in irradiated nucleoids of both Deinococcus species. We observed, by immunofluorescence microscopy, the subcellular localization of these proteins in D. radiodurans, showing for the first time the recruitment of the DdrD protein into the D. radiodurans nucleoid. We specifically followed the kinetics of recruitment of RecA, DdrA, and DdrD to the nucleoid after irradiation. Remarkably, RecA proteins formed irregular filament-like structures 1 h after irradiation, before being redistributed throughout the cells by 3 h post-irradiation. Comparable dynamics of DdrD localization were observed, suggesting a possible functional interaction between RecA and DdrD. Several proteins involved in nucleotide synthesis were also seen in higher quantities in the nucleoids of irradiated cells, indicative of the existence of a mechanism for orchestrating the presence of proteins involved in DNA metabolism in nucleoids in response to massive DNA damage. All MS data have been deposited in the ProteomeXchange with identifier PXD00196 (http://proteomecentral.proteomexchange.org/dataset/PXD000196).


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , Deinococcus/genética , Proteoma/metabolismo , Reparo do DNA , DNA Bacteriano/genética , Deinococcus/metabolismo , Deinococcus/efeitos da radiação , Cinética , Transporte Proteico , Proteômica , Tolerância a Radiação , Recombinases Rec A/metabolismo , Espectrometria de Massas em Tandem
14.
Mol Microbiol ; 88(2): 443-55, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23461641

RESUMO

Transposable elements belonging to the recently identified IS200/IS605 family radically differ from classical insertion sequences in their transposition mechanism by strictly requiring single-stranded DNA substrates. This IS family includes elements encoding only the transposase (TnpA), and others, like ISDra2 from Deinococcus radiodurans, which contain a second gene, tnpB, dispensable for transposition and of unknown function to date. Here, we show that TnpB has an inhibitory effect on the excision and insertion steps of ISDra2 transposition. This inhibitory action of TnpB was maintained when ISDra2 transposition was induced by γ-irradiation of the host cells and required the integrity of its putative zinc finger motif. We also demonstrate the negative role of TnpB when ISDra2 transposition was monitored in a heterologous Escherichia coli host, indicating that TnpB-mediated inhibition does not involve Deinococcus-specific factors. TnpB therefore appears to play a regulatory role in ISDra2 transposition.


Assuntos
Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis/genética , DNA Bacteriano/metabolismo , Deinococcus/genética , Deinococcus/efeitos da radiação , Regulação para Baixo , Transposases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Deinococcus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagênese Insercional , Transposases/química , Transposases/genética
15.
DNA Repair (Amst) ; 12(4): 265-72, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23403184

RESUMO

Deinococcus radiodurans, one of the most radioresistant organisms known to date is able to reconstruct an intact genome from hundreds of DNA fragments. Here, we investigate the in vivo role of PprA, a radiation-induced Deinococcus specific protein. We report that DNA double strand break repair in cells devoid of PprA and exposed to 3800Gy γ-irradiation takes place efficiently with a delay of only 1h as compared to the wild type, whereas massive DNA synthesis begins 90min after irradiation as in the wild type, a phenotype insufficient to explain the severe radiosensitivity of the ΔpprA mutant. We show that the slow kinetics of reassembly of DNA fragments in a ΔpprA ΔrecA double mutant was the same as that observed in a ΔrecA single mutant demonstrating that PprA does not play a major role in DNA repair through RecA-independent pathways. Using a tagged PprA protein and immunofluorescence microscopy, we show that PprA is recruited onto the nucleoid after γ-irradiation before DNA double strand break repair completion, and then is found as a thread across the septum in dividing cells. Moreover, whereas untreated cells devoid of PprA displayed a wild type morphology, they showed a characteristic cell division abnormality after irradiation not found in other radiosensitive mutants committed to die, as DNA is present equally in the two daughter cells but not separated at the division septum. We propose that PprA may play a crucial role in the control of DNA segregation and/or cell division after DNA double strand break repair.


Assuntos
Proteínas de Bactérias/genética , Divisão Celular/genética , Deinococcus/genética , Raios gama , Proteínas de Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Deinococcus/citologia , Deinococcus/efeitos da radiação , Deleção de Genes , Fenótipo , Tolerância a Radiação/genética , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
16.
PLoS One ; 8(2): e56558, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23441204

RESUMO

The bacterium Deinococcus radiodurans exhibits an extreme resistance to ionizing radiation. A small subset of Deinococcus genus-specific genes were shown to be up-regulated upon exposure to ionizing radiation and to play a role in genome reconstitution. These genes include an SSB-like protein called DdrB. Here, we identified a novel protein encoded by the dr1245 gene as an interacting partner of DdrB. A strain devoid of the DR1245 protein is impaired in growth, exhibiting a generation time approximately threefold that of the wild type strain while radioresistance is not affected. We determined the three-dimensional structure of DR1245, revealing a relationship with type III secretion system chaperones and YbjN family proteins. Thus, DR1245 may display some chaperone activity towards DdrB and possibly other substrates.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Deinococcus/metabolismo , Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Deinococcus/genética , Deinococcus/crescimento & desenvolvimento , Deinococcus/efeitos da radiação , Modelos Moleculares , Chaperonas Moleculares/química , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Tolerância a Radiação/genética , Alinhamento de Sequência
17.
J Proteomics ; 75(9): 2588-600, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22446890

RESUMO

Compared to radiation-sensitive bacteria, the nucleoids of radiation-resistant Deinococcus species show a higher degree of compaction. Such a condensed nucleoid may contribute to the extreme radiation resistance of Deinococcus by limiting dispersion of radiation-induced DNA fragments. Architectural proteins may play a role in this high degree of nucleoid compaction, but comparative genomics revealed only a limited number of Deinococcus homologs of known nucleoid-associated proteins (NAPs) from other species such as Escherichia coli. A comparative proteomic approach was used to identify potentially novel proteins from isolated nucleoids of Deinococcus radiodurans and Deinococcus deserti. Proteins in nucleoid enriched fractions were identified and semi-quantified by shotgun proteomics. Based on normalized spectral counts, the histone-like DNA-binding protein HU appeared to be the most abundant among candidate NAPs from both micro-organisms. By immunofluorescence microscopy, D. radiodurans HU and both DNA gyrase subunits were shown to be distributed throughout the nucleoid structure and absent from the cytoplasm. Taken together, our results suggest that D. radiodurans and D. deserti bacteria contain a very low diversity of NAPs, with HU and DNA gyrase being the main proteins involved in the organization of the Deinococcus nucleoids.


Assuntos
Proteínas de Bactérias/química , Deinococcus/genética , Organelas/metabolismo , Proteínas de Bactérias/isolamento & purificação , DNA Girase/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Deinococcus/efeitos da radiação , Organelas/química , Proteômica
18.
DNA Repair (Amst) ; 10(12): 1223-31, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21968057

RESUMO

The Deinococcus radiodurans bacterium exhibits an extreme resistance to ionizing radiation. Here, we investigated the in vivo role of DdrB, a radiation-induced Deinococcus specific protein that was previously shown to exhibit some in vitro properties akin to those of SSB protein from Escherichia coli but also to promote annealing of single stranded DNA. First we report that the deletion of the C-terminal motif of the DdrB protein, which is similar to the SSB C-terminal motif involved in recruitment to DNA of repair proteins, did neither affect cell radioresistance nor DNA binding properties of purified DdrB protein. We show that, in spite of their different quaternary structure, DdrB and SSB occlude the same amount of ssDNA in vitro. We also show that DdrB is recruited early and transiently after irradiation into the nucleoid to form discrete foci. Absence of DdrB increased the lag phase of the extended synthesis-dependent strand annealing (ESDSA) process, affecting neither the rate of DNA synthesis nor the efficiency of fragment reassembly, as indicated by monitoring DNA synthesis and genome reconstitution in cells exposed to a sub-lethal ionizing radiation dose. Moreover, cells devoid of DdrB were affected in the establishment of plasmid DNA during natural transformation, a process that requires pairing of internalized plasmid single stranded DNA fragments, whereas they were proficient in transformation by a chromosomal DNA marker that integrates into the host chromosome through homologous recombination. Our data are consistent with a model in which DdrB participates in an early step of DNA double strand break repair in cells exposed to very high radiation doses. DdrB might facilitate the accurate assembly of the myriad of small fragments generated by extreme radiation exposure through a single strand annealing (SSA) process to generate suitable substrates for subsequent ESDSA-promoted genome reconstitution.


Assuntos
Proteínas de Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA de Cadeia Simples/metabolismo , Deinococcus/metabolismo , Plasmídeos/genética , Transformação Bacteriana , Transporte Ativo do Núcleo Celular/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Fragmentação do DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/genética , Deinococcus/genética , Deinococcus/efeitos da radiação , Mutação , Estrutura Terciária de Proteína , Tolerância a Radiação/genética , Fatores de Tempo , Transformação Bacteriana/efeitos da radiação
19.
Microb Ecol ; 61(3): 715-22, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21161207

RESUMO

To test the effect of humidity on the radiation resistance of Deinococcus radiodurans, air-dried cells were irradiated with germicidal 254 nm UV, and simulated environmental UV or γ-radiation and survival was compared to cells in suspension. It was observed that desiccated cells exhibited higher levels of resistance than cells in suspension toward UV or γ-radiation as well as after 85°C heat shock. It was also shown that low relative humidity improves survival during long-term storage of desiccated D. radiodurans cells. It can be concluded that periods or environments in which cells exist in a dehydrated state are beneficial for D. radiodurans' survival exposed to various other stresses.


Assuntos
Deinococcus/efeitos da radiação , Dessecação , Raios gama , Temperatura Alta , Umidade , Tolerância a Radiação , Raios Ultravioleta , Deinococcus/fisiologia , Viabilidade Microbiana , Estresse Fisiológico , Água/fisiologia
20.
EMBO J ; 29(22): 3840-52, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-20890269

RESUMO

Bacterial insertion sequences (ISs) from the IS200/IS605 family encode the smallest known DNA transposases and mobilize through single-stranded DNA transposition. Transposition by one particular family member, ISDra2 from Deinococcus radiodurans, is dramatically stimulated upon massive γ irradiation. We have determined the crystal structures of four ISDra2 transposase/IS end complexes; combined with in vivo activity assays and fluorescence anisotropy binding measurements, these have revealed the molecular basis of strand discrimination and transposase action. The structures also show that previously established structural rules of target site recognition that allow different specific sequences to be targeted are only partially conserved among family members. Furthermore, we have captured a fully assembled active site including the scissile phosphate bound by a divalent metal ion cofactor (Cd²(+)) that supports DNA cleavage. Finally, the observed active site rearrangements when the transposase binds a metal ion in which it is inactive provide a clear rationale for metal ion specificity.


Assuntos
DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Deinococcus/enzimologia , Transposases/química , Transposases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA de Cadeia Simples/química , Deinococcus/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Alinhamento de Sequência , Transposases/genética , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...