Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 332: 118374, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38789093

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Picrasma quassioides (D. Don) Benn is a vascular plant belonging to the genus Picrasma of Simaroubaceae family and grows in Korea, China, India, Taiwan, and Japan. Picrasma quassioides extract has been reported to have anti-inflammatory, anti-bacterial, and anti-cancer properties. Moreover, this plant has been also traditionally used to alleviate symptoms of eczema, atopic dermatitis, psoriasis, scabies, and boils in skin. AIM OF THE STUDY: The Pq-EE has been reported in Chinese pharmacopoeia for its pharmacological effects on skin. However, the detailed mechanism on alleviating skin conditions is not understood. Hence, we investigated the skin improvement potential of Pq-EE against skin damage. MATERIALS AND METHODS: We used the human keratinocyte cell line (HaCaT) and mouse melanoma cell line (B16F10) to study the effects of Pq-EE on the epidermis. Additionally, in vitro antioxidant assays were performed using a solution that included either metal ions or free radicals. RESULTS: In colorimetric antioxidant assays, Pq-EE inhibited free radicals in a dose-dependent manner. The Pq-EE did not affect cell viability and promoted cell survival under UVB exposure conditions in the MTT assay. The Pq-EE downregulated the mRNA levels of apoptotic factors. Moreover, MMP1 and inflammatory cytokine iNOS mRNA levels decreased with Pq-EE treatment. With regard to protein levels, caspases and cleaved caspases were more powerfully inhibited by Pq-EE than UVB-irritated conditions. p53 and Bax also decreased with Pq-EE treatment. The melanin contents and secretion were decreased at nontoxic concentrations of Pq-EE. The pigmentation pathway genes also were inhibited by treatment with Pq-EE. CONCLUSIONS: In summary, we suggest the cell protective potential of Pq-EE against UVB and ROS, indicating its use in UV-protective cosmeceutical materials.


Assuntos
Anti-Inflamatórios , Antioxidantes , Apoptose , Melaninas , Picrasma , Extratos Vegetais , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Apoptose/efeitos dos fármacos , Humanos , Camundongos , Picrasma/química , Antioxidantes/farmacologia , Melaninas/metabolismo , Etanol/química , Células HaCaT , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética
2.
Environ Microbiol Rep ; 16(1): e13226, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38298071

RESUMO

Flavobacterium plurextorum is a potential fish pathogen of interest, previously isolated from diseased rainbow trout (Oncorhynchus mykiss) and oomycete-infected chum salmon (Oncorhynchus keta) eggs. We report here the first complete genome sequence of F. plurextorum RSG-18 isolated from the gut of Schlegel's black rockfish (Sebastes schlegelii). The genome of RSG-18 consists of a circular chromosome of 5,610,911 bp with a 33.57% GC content, containing 4858 protein-coding genes, 18 rRNAs, 63 tRNAs and 1 tmRNA. A comparative analysis was conducted on 11 Flavobacterium species previously reported as pathogens or isolated from diseased fish to confirm the potential pathogenicity of RSG-18. In the SEED classification, RSG-18 was found to have 36 genes categorized in 'Virulence, Disease and Defense'. Across all Flavobacterium species, a total of 16 antibiotic resistance genes and 61 putative virulence factors were identified. All species had at least one phage region and type I, III and IX secretion systems. In pan-genomic analysis, core genes consist of genes linked to phages, integrases and matrix-tolerated elements associated with pathology. The complete genome sequence of F. plurextorum RSG-18 will serve as a foundation for future research, enhancing our understanding of Flavobacterium pathogenicity in fish and contributing to the development of effective prevention strategies.


Assuntos
Bacteriófagos , Doenças dos Peixes , Oncorhynchus mykiss , Perciformes , Animais , Flavobacterium/genética , Virulência/genética , Fatores de Virulência/genética , Peixes/microbiologia , Doenças dos Peixes/microbiologia , Oncorhynchus mykiss/microbiologia
3.
Genes Genomics ; 46(3): 367-378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095842

RESUMO

BACKGROUND: Secondary metabolites such as benzylisoquinoline alkaloids (BIA) have attracted considerable attention because of their pharmacological properties and potential therapeutic applications. Methyltransferases (MTs) can add methyl groups to alkaloid molecules, altering their physicochemical properties and bioactivity, stability, solubility, and recognition by other cellular components. Five types of O-methyltransferases and two types of N-methyltransferases are involved in BIA biosynthesis. OBJECTIVE: Since MTs may be the source for the discovery and development of novel biomedical, agricultural, and industrial compounds, we performed extensive molecular and phylogenetic analyses of O- and N-methyltransferases in BIA-producing plants. METHODS: MTs involved in BIA biosynthesis were isolated from transcriptomes of Berberis koreana and Caulophyllum robustum. We also mined the methyltransferases of Coptis japonica, Papaver somniferum, and Nelumbo nucifera from the National Center for Biotechnology Information protein database. Then, we analyzed the functional motifs and phylogenetic analysis. RESULT: We mined 42 O-methyltransferases and 8 N-methyltransferases from the five BIA-producing plants. Functional motifs for S-adenosyl-L-methionine-dependent methyltransferases were retained in most methyltransferases, except for the three O-methyltransferases from N. nucifera. Phylogenetic analysis revealed that the methyltransferases were grouped into four clades, I, II, III and IV. The clustering patterns in the phylogenetic analysis suggested a monophyletic origin of methyltransferases and gene duplication within species. The coexistence of different O-methyltransferases in the deep branch subclade might support some cases of substrate promiscuity. CONCLUSIONS: Methyltransferases may be a source for the discovery and development of novel biomedical, agricultural, and industrial compounds. Our results contribute to further understanding of their structure and reaction mechanisms, which will require future functional studies.


Assuntos
Alcaloides , Benzilisoquinolinas , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Alcaloides/metabolismo , Plantas/metabolismo
4.
J Anim Sci Technol ; 65(5): 1105-1109, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37969339

RESUMO

Pedi coccus acidilactici CACC 537 was isolated from canine feces and reported to have probiotic properties. We aimed to characterize the potential probiotic properties of this strain by functional genomic analysis. Complete genome sequencing of P. acidilactici CACC 537 was performed using a PacBio RSII and Illumina platform, and contained one circular chromosome (2.0 Mb) with a 42% G + C content. The sequences were annotation revealed 1,897 protein-coding sequences, 15 rRNAs, and 56 tRNAs. It was determined that P. acidilactici CACC 537 genome carries genes known to be involved in the immune system, defense mechanisms, restriction-modification (R-M), and the CRISPR system. CACC 537 was shown to be beneficial in preventing pathogen infection during the fermentation process, help host immunity, and maintain intestinal health. These results provide for a comprehensive understanding of P. acidilactici and the development of industrial probiotic feed additives that can help improve host immunity and intestinal health.

5.
Antonie Van Leeuwenhoek ; 116(10): 975-986, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542623

RESUMO

In the late 1970s, Flavobacterium bizetiae was first isolated from diseased fish in Canada. After four decades of preservation, it was reported as a novel species in 2020. Here, we report the first complete genome sequence of HJ-32-4, a novel strain of F. bizetiae. Interestingly, HJ-32-4 was isolated from soil in Gangwon-do, Republic of Korea, unlike the other two previously reported F. bizetiae strains which were isolated from fish. We generated a single circular chromosome of HJ-32-4, comprising 5,745,280 bp with a GC content of 34.2%. The average nucleotide identity (ANI) value of 96.2% indicated that HJ-32-4 belongs to F. bizetiae CIP 105534T. The virulence factor was not detected in the genome. Comparative genomic analysis of F. bizetiae and major flavobacterial pathogens revealed that F. bizetiae had a larger genome size and the ratio of peptidases (PEP) and glycoside hydrolase (GH) genes of F. bizetiae were lower than those of the rest strains, implying that F. bizetiae exhibits similar characteristics with non-pathogenic strains from a genomic point of view. However, further experimental verification is required to ensure these in silico predictions. This study will provide insight into the overall characteristics of HJ-32-4 compared to other strains.


Assuntos
Flavobacterium , Solo , Animais , Flavobacterium/genética , Análise de Sequência de DNA , Genômica , Fatores de Virulência/genética , Peixes , Filogenia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ácidos Graxos
6.
Molecules ; 28(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37175347

RESUMO

Plants in the genus Juniperus have been reported to produce a variety of chemical components, such as coumarins, flavonoids, lignans, sterols, and terpenoids. Here, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) were applied to qualitatively and quantitatively analyze the major bioactive components in an ethanolic crude extract from the leaves of Juniperus chinensis L., which grows naturally in Korea. In addition, the antibacterial activity of the crude extract against pathogenic bacteria was investigated. Using LC-QTOF-MS analysis, we identified ten compounds, of which six were confirmed to be flavonoid and lignan-based components as the major bioactive components, i.e., isoquercetin, quercetin-3-O-α-l-rhamnoside, hinokiflavone, amentoflavone, podocarpusflavone A, and matairesinoside. Among them, a quantitative analysis performed using LC-MS/MS revealed that the levels of quercetin-3-O-α-l-rhamnoside and amentoflavone in the crude extract were 203.78 and 69.84 mg/g, respectively. Furthermore, the crude extract exhibited potential antibacterial activity against 10 pathogenic bacteria, with the highest antibacterial activity detected against Bordetella pertussis. Thus, further studies of the leaf extract of J. chinensis L. must be carried out to correlate the compounds present in the extract with the antibacterial activity and elucidate the mechanisms of action of this extract against bacteria.


Assuntos
Juniperus , Lignanas , Cromatografia Líquida , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Quercetina/análise , Juniperus/química , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Lignanas/farmacologia , Lignanas/análise , Bactérias , Antibacterianos/farmacologia
7.
Phytochemistry ; 211: 113711, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150434

RESUMO

During the screening of the cytotoxicity of rare Korean endemic plants, the extract of Thuja koraiensis Nakai displayed potent cytotoxicity against the adenocarcinomic human alveolar basal epithelial A549 cell line. Through a series of separations via column chromatography, three undescribed abietanes, an undescribed labdane along with a labdane, and a biflavonoid were purified from methylene chloride (CH2Cl2) fraction possessing a potent cytotoxic effect. Extensive 1D and 2D NMR spectroscopic data analyses, in combination with quantum chemical calculations were conducted to establish the planar and absolute configurations of thujakoraienes A-C. The chemical structure of thujakoraiene D was elucidated by spectroscopic data analysis and competing enantioselective acylation. Thujakoraienes A and C along with 7,7″-di-O-methylamentoflavone, showed cytotoxic effects on A549 cells, with IC50 values of 64.86, 47.97, and 16.14 µM, respectively. Finally, thujakoraiene C and 7,7″-di-O-methylamentoflavone were identified as potent cytotoxic compounds in A549 cells, followed by an additional cytotoxicity test in the normal human lung fibroblast MRC-5 cell line. This is the first study on the non-volatile chemicals in the extract of T. koraiensis and comparison of chemical profiles of T. orientalis and T. koraiensis.


Assuntos
Antineoplásicos , Diterpenos , Thuja , Humanos , Células A549 , Thuja/química , Estrutura Molecular , Antineoplásicos/farmacologia , Diterpenos/química , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral
8.
Curr Microbiol ; 80(2): 83, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680647

RESUMO

The wetland is an important ecosystem for purifying pollutants and circulating nutrients. Numerous microorganisms contribute to maintaining this function. We obtained Flavobacterium enshiense R6S-5-6 which was isolated from Ungok (Ramsar) Wetland and conducted whole-genome sequencing to investigate what contribution R6S-5-6 could make to the wetland community. The complete genome sequence of R6S-5-6 has a size of 3,251,289 bp with 37.68% of GC content. Gene annotation revealed that R6S-5-6 has several pathways to break down pollutants, including denitrification, assimilatory sulfate reduction (ASR), and polyphosphate-accumulating process. Furthermore, R6S-5-6 has genes that can have a positive effect on plants living in wetlands, such as storing essential nutrients, promoting plant growth, and protecting plants against pathogens.


Assuntos
Ecossistema , Poluentes Ambientais , Áreas Alagadas , Desenvolvimento Vegetal
9.
Arch Microbiol ; 205(1): 22, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36495352

RESUMO

Tidal flat microbes play an important ecological role by removing organic pollutants and providing an energy source. However, bacteria isolated from tidal flats and their genomes have been scarcely reported, making it difficult to elucidate which genes and pathways are potentially involved in the above roles. In this study, strain BSSL-CR3, the third reported species among the tidal flat Flavobacterium was analyzed using whole-genome sequencing to investigate its adaptability and functionality in tidal flats. BSSL-CR3 is comprised of a circular chromosome of 5,972,859 bp with a GC content of 33.84%. Genome annotation and API ZYM results showed that BSSL-CR3 has a variety of secondary metabolic gene clusters and enzyme activities including α-galactosidase. BSSL-CR3 had more proteins with a low isoelectric point (pI) than terrestrial Flavobacterium strains, and several genes related to osmotic regulation were found in the genomic island (GI). Comparative genomic analysis with other tidal flat bacteria also revealed that BSSL-CR3 had the largest number of genes encoding Carbohydrate Active EnZymes (CAZymes) which are related to algae degradation. This study will provide insight into the adaptability of BSSL-CR3 to the tidal flats and contribute to facilitating future comparative analysis of bacteria in tidal flats.


Assuntos
Flavobacterium , Genômica , Flavobacterium/genética , Ilhas Genômicas , Plantas
10.
Plants (Basel) ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501275

RESUMO

Dryopteris sp. is known for its various pharmacological effects and is used as a traditional medicine in Asia. The present study investigated the chemical composition and antimicrobial activity of Dryopteris sp. distributed in Korea. The chemical compounds in the ethanolic extracts of Dryopteris lacera and Dryopteris bissetiana were investigated by ultra-high performance liquid chromatography-quadrupole time-of-flight-mass spectrometry analysis and identified by exploring the UNIFI traditional medicine library. Flavonoids such as juglanin, 6-hydroxyluteolin 7-O-laminaribioside, peltatoside, kaempferitrin, hyperoside, and astragalin were identified in both D. lacera and D. bissetiana. Neochlorogenic acid was identified as a caffeoylquinic acid in D. bissetiana. Both extracts of D. lacera and D. bissetiana exhibited antibacterial activity against Gram-positive pathogens, Staphylococcus aureus and Streptococcus mutans. The minimum inhibitory concentration of D. bissetiana against S. aureus was less than 625 ppm. The antibacterial activity was attributed to the identified phenolic compounds, juglanin, 6-hydroxyluteolin 7-O-laminaribioside, kaempferitrin, astragalin, and neochlorogenic acid. Therefore, D. lacera and D. bissetiana can be used as Gram-positive selective antibiotics for further investigation.

11.
Front Mol Neurosci ; 15: 1014497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385759

RESUMO

Gintonin, a glycolipid protein conjugated with lysophosphatidic acid (LPA), is a newly identified compound extracted from Korean ginseng. LPA receptor isotypes exhibit high affinity for gintonin and mediate intracellular calcium signaling in various animal cell models. In this study, we found that gintonin induced the activation of Akt and cAMP-response element binding protein (CREB) in mouse striatal neurons, and chronic treatment with gintonin potently induced dendritic growth and filopodia formation. Gintonin-induced Akt/CREB activation and dendritic development were significantly impaired by LPA receptor (LPAR1/3) inhibition with Ki16425. Intriguingly, prolonged treatment with gintonin ameliorated the reduction in dendritic formation caused by Shank3 and Slitrk5 deficiency in the striatal neurons. In addition, gintonin and brain-derived neurotrophic factor (BDNF) had a synergistic effect on AKT/CREB activation and dendritic growth at suboptimal concentrations. These findings imply that gintonin-stimulated LPA receptors play a role in dendritic growth in striatal neurons and that they may act synergistically with BDNF, which is known to play a role in dendritogenesis.

12.
Microbiol Resour Announc ; 11(9): e0005422, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993777

RESUMO

Here, we report the complete genome sequence of Flavobacterium sediminilitoris YSM-43T, isolated from a tidal flat in Yeosu, Republic of Korea. The whole genome consists of one circular chromosome of 3,913,692 bp. A total of 3,599 genes were predicted, comprising 3,537 coding DNA sequences (CDSs), 50 tRNAs, 9 rRNAs, and 3 noncoding RNAs (ncRNAs).

13.
Antioxidants (Basel) ; 11(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35624854

RESUMO

Tomentosin, one of natural sesquiterpene lactones sourced from Inula viscosa L., exerts therapeutic effects in various cell types. Here, we investigated the antioxidant activities and the underlying action mechanisms of tomentosin in HaCaT cells (a human keratinocyte cell line). Specifically, we examined the involvement of tomentosin in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Treatment with tomentosin for up to 60 min triggered the production of reactive oxygen species (ROS), whereas treatment for 4 h or longer decreased ROS production. Tomentosin treatment also induced the nuclear translocation of Nrf2 and upregulated the expression of Nrf2 and its target genes. These data indicate that tomentosin induces ROS production at an early stage which activates the Nrf2 pathway by disrupting the Nrf2-Keap1 complex. However, at a later stage, ROS levels were reduced by tomentosin-induced upregulation of antioxidant genes. In addition, tomentosin induced the phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 MAPK and c-Jun N-terminal kinase (JNK). SB203580 (a p38 MAPK inhibitor) and SP600125 (a JNK inhibitor) attenuated the tomentosin-induced phosphorylation of Nrf2, suggesting that JNK and p38 MAPK signaling pathways can contribute to the tomentosin-induced Nrf2 activation through phosphorylation of Nrf2. Furthermore, N-acetyl-L-cysteine (NAC) treatment blocked both tomentosin-induced production of ROS and the nuclear translocation of Nrf2. These data suggest that tomentosin-induced Nrf2 signaling is mediated both by tomentosin-induced ROS production and the activation of p38 MAPK and JNK. Moreover, tomentosin inhibited the AhR signaling pathway, as evidenced by the suppression of xenobiotic-response element (XRE) reporter activity and the translocation of AhR into nucleus induced by urban pollutants, especially benzo[a]pyrene. These findings suggest that tomentosin can ameliorate skin damage induced by environmental pollutants.

14.
Plant Pathol J ; 38(2): 115-130, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35385917

RESUMO

Though information exists regarding the pathogenesis of the shot-hole disease (SH) in flowering cherry (FC), there has been a lack of research focusing on SH management. Therefore, here, we investigated the inhibitory activities of antagonistic bacteria against SH pathogens both in vitro and in vivo as well as their biochemical characteristics and bioactive compounds. Two biosurfactant-producing bacterial antagonists, identified as Bacillus velezensis strains JCK-1618 and JCK-1696, exhibited the best effects against the growth of both bacterial and fungal SH pathogens in vitro through their cell-free culture filtrates (CFCFs). These two strains also strongly inhibited the growth of the pathogens via the action of their antimicrobial diffusible compounds and antimicrobial volatile organic compounds (VOCs). Crude enzymes, solvent extracts, and biosurfactants of the two strains exhibited antimicrobial activities. Liquid chromatography/electrospray ionization time-of-flight mass spectrometric analysis of the partially purified active fractions revealed that the two antagonists produced three cyclic lipopeptides, including iturin A, fengycin A, and surfactin, and a polyketide, oxydifficidin. In a detached leaf assay, pre-treatment and co-treatment of FC leaves with the CFCFs led to a large reduction in the severity of the leaf spots caused by Epicoccum tobaicum and Bukholderia contaminans, respectively. In addition, the two antagonists produced indole-3-acetic acid, siderophore, and a series of hydrolytic enzymes, along with the formation of a substantial biofilm. To our knowledge, this is the first report of the antimicrobial activities of the diffusible compounds and VOCs of B. velezensis against the SH pathogens and their efficiency in the biocontrol of SH.

15.
Plant Dis ; 105(12): 3795-3802, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34142849

RESUMO

Shot-hole disease (SH) is one of the most common and important diseases affecting flowering cherry (FC; Prunus × yedoensis Matsumura; Somei-yoshino) trees in South Korea every year, resulting in premature defoliation and reduced flowering in the following year. However, pathogens associated with the disease remain unknown, which has rendered disease management challenging. Here, the pathogens associated with SH, their biochemical characteristics, and their host range were elucidated. Detached-leaf and in planta assays revealed that two biofilm-forming bacteria-namely, Burkholderia contaminans and Pseudomonas syringae pv. syringae-caused SH of FC trees. These pathogens were recorded for the first time as the causes of SH of FC trees in South Korea. Additionally, the two pathogens induced similar disease symptoms in several stone fruit belonging to the genus Prunus, including peach (Prunus persica), plum (P. salicina), and apricot (P. mume), with peach being the most susceptible. These results indicate that B. contaminans and P. syringae pv. syringae caused SH on FC trees and presented a broad spectrum of hosts. Furthermore, Xanthomonas arboricola pv. pruni, the causative agent of leaf spot on stone fruit, incited brown spots and shot holes on FC leaves. Therefore, FC trees are susceptible to infections by various pathogenic bacteria, including B. contaminans, P. syringae pv. syringae, and X. arboricola pv. pruni. These findings will be of great importance as a reference for effective management of SH in the face of possible cross-infection between Prunus spp. in the future.


Assuntos
Prunus , Pseudomonas syringae , Burkholderia , Frutas , Doenças das Plantas
16.
Eur J Pharmacol ; 898: 173991, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684451

RESUMO

In the present study, we investigated the vasorelaxant effects of alogliptin, an oral antidiabetic drug in the dipeptidyl peptidase-4 (DPP-4) inhibitor class, using phenylephrine (Phe)-induced pre-contracted aortic rings. Alogliptin induced vasorelaxation in a dose-dependent manner. Pre-treatment with the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (4-AP) significantly decreased the vasorelaxant effect of alogliptin, whereas pre-treatment with the inwardly rectifying K+ (Kir) channel inhibitor Ba2+, ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, and large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline did not alter the effects of alogliptin. Although pre-treatment with the Ca2+ channel inhibitor nifedipine did not affect the vasorelaxant effect of alogliptin, pre-treatment with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid effectively attenuated the vasorelaxant response of alogliptin. Neither cGMP/protein kinase G (PKG)-related signaling pathway inhibitors (guanylyl cyclase inhibitor ODQ and PKG inhibitor KT 5823) nor cAMP/protein kinase A (PKA)-related signaling pathway inhibitors (adenylyl cyclase inhibitor SQ 22536 and PKA inhibitor KT 5720) reduced the vasorelaxant effect of alogliptin. Similarly, the vasorelaxant effect of alogliptin was not changed by endothelium removal or pre-treatment with the nitric oxide (NO) synthase inhibitor L-NAME or the small- and intermediate-conductance Ca2+-activated K+ (SKCa and IKCa) channel inhibitors apamin and TRAM-34. Based on these results, we suggest that alogliptin induced vasorelaxation in rabbit aortic smooth muscle by activating Kv channels and the SERCA pump independent of other K+ channels, cGMP/PKG-related or cAMP/PKA-related signaling pathways, and the endothelium.


Assuntos
Músculo Liso Vascular/efeitos dos fármacos , Piperidinas/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/agonistas , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Uracila/análogos & derivados , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Ativação Enzimática , Masculino , Músculo Liso Vascular/enzimologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Coelhos , Transdução de Sinais , Uracila/farmacologia
17.
Plant Dis ; 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461318

RESUMO

Flowering cherry (FC, Prunus x yedoensis Matsumura; Somei-yoshino cherry) is an ornamental tree, planted across South Korea and producing stunning flowers in spring. The seasonal blooms are annually celebrated during cherry blossom festivals in many locations across the country. The leaf spot disease is among the most common and important diseases affecting FC trees every year, resulting in premature defoliation and reduced flowering of cherry blossoms in the following year. In May 2018, brown spots (2 to 5 mm), circular to irregular and with dark borders were observed on FC leaves in Hadong, Gyeongsangnamdo, South Korea (35°07'48.9"N, 127°46'53.8"E), with a disease incidence of 55%. Single lesions often coalesced and were sometimes perforated, leaving shot holes. Sampled leaves were surface sterilized with 1% NaOCl for 1 min and 70% ethanol for 30 s, and then rinsed twice with sterile distilled water. About 2-mm-long infected leaf pieces from the margins of lesions were put onto water agar (WA, 1.5% agar) plates and incubated at 25oC for 72 h. Mycelia grown from symptomatic tissue were transferred to PDA plates, and five similar fungal isolates were obtained from hyphal tips. They produced a strong reddish-orange diffusible pigment on PDA after 5 d and exudates after 8 d. Conidia were globular to pear-shaped, dark, verrucose, multicellular, and 14.8 to 23.5 µm in diameter (av. = 18.7 µm, n = 30) for isolate JCK-CSHF10. These morphological characteristics were consistent with the Epicoccum genus. Three loci, ITS, tub2, and rpb2, from three isolates JCK-CSHF8, JCK-CSHF9, and JCK-CSHF10 were amplified using the primer pairs ITS1F/LR5 (Gardes and Bruns 1993; Vilgalys and Hester 1990), Btub2Fd/Btub4Rd (Woudenberg et al. 2009), and RPB2-5F2/RPB2-7cR (Liu et al. 1999; Sung et al. 2007), respectively. The ITS, tub2, and rpb2 sequences of the three isolates were deposited in Genbank (MW368668-MW368670, MW392083-MW392085, and MW392086-MW392088, respectively), showing 99.6 to 100% identity to E. layuense (E33), a later synonym for E. tobaicum (Hou et al. 2020). The phylogenetic tree using concatenated sequences of the three loci placed the three isolates in a cluster of E. tobaicum (CBS 232.59, CGMCC 3.18362, and CBS 384.36; Hou et al. 2020). Taken together, the three isolates were identified as E. tobaicum. The pathogenicity of JCK-CSHF10 was tested on 15 healthy leaves on three FC trees (cv. Somei-yoshino, 1.2 m in height) kept in a greenhouse. Five-mm-diameter plugs from 7-d-old fungal cultures grown on PDA or mycelia-free PDA plugs as controls were placed on the abaxial side of a leaf at three points, previously wounded by a sterile needle (Zlatkovic et al. 2016). Inoculation sites were covered with moist cotton plugs. Trees were then covered with a clear plastic bag and maintained in high humidity at 25oC in darkness for 24 h, followed by a 12-h photoperiod. Brown spots appeared on inoculated leaves after 7 d, identical to those observed in the field, while control leaves remained symptomless. This experiment was repeated three times. A fungus with the same morphology as JCK-CSHF10 was recovered from lesions, thus confirming Koch's postulates. E. layuense (syn. E. tobaicum) has been reported as a leaf spot-causing agent on Perilla sp. (Chen et al. 2017) and Camellia sinensis (Chen et al. 2020). To date, there is no report on the occurrence of E. tobaicum from leaf spots on FC. To our knowledge, this is the first report of E. tobaicum causing leaf spot on FC in South Korea.

18.
Pharmaceuticals (Basel) ; 13(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977547

RESUMO

The recent pandemic of coronavirus disease 2019 (COVID-19) has increased demand for chemical disinfectants, which can be potentially hazardous to users. Here, we suggest that the cell-free supernatant from Lactobacillus plantarum NIBR97, including novel bacteriocins, has potential as a natural alternative to chemical disinfectants. It exhibits significant antibacterial activities against a broad range of pathogens, and was observed by scanning electron microscopy (SEM) to cause cellular lysis through pore formation in bacterial membranes, implying that its antibacterial activity may be mediated by peptides or proteins and supported by proteinase K treatment. It also showed significant antiviral activities against HIV-based lentivirus and influenza A/H3N2, causing lentiviral lysis through envelope collapse. Furthermore, whole-genome sequencing revealed that NIBR97 has diverse antimicrobial peptides, and among them are five novel bacteriocins, designated as plantaricin 1 to 5. Plantaricin 3 and 5 in particular showed both antibacterial and antiviral activities. SEM revealed that plantaricin 3 causes direct damage to both bacterial membranes and viral envelopes, while plantaricin 5 damaged only bacterial membranes, implying different antiviral mechanisms. Our data suggest that the cell-free supernatant from L. plantarum NIBR97, including novel bacteriocins, is potentially useful as a natural alternative to chemical disinfectants.

19.
Phytother Res ; 34(1): 126-138, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31512302

RESUMO

Betula platyphylla (BP) is frequently administered in the treatment of various human diseases, including cancers. This study was undertaken to investigate the pharmacological function of the active components in BP and the underlying mechanism of its chemotherapeutic effects in human lung cancer cells. We observed that BP extracts and 1,7-bis(4-hydroxyphenyl)-4-hepten-3-one (BE1), one of the components of BP, effectively decreased the cell viability of several lung cancer cell lines. BE1-treated cells exhibited apoptosis induction and cell cycle arrest at the G2/M phase. Further examination demonstrated that BE1 treatment resulted in suppression of autophagy, as evidenced by increased protein expression levels of both LC3 II and p62/SQSTM1. Interestingly, the pharmacological induction of autophagy with rapamycin remarkably reduced the BE1-induced apoptosis, indicating that apoptosis induced by BE1 was associated with autophagy inhibition. Our data also demonstrated that BE1 exposure activated the p38 pathway resulting in regulation of the pro-apoptotic activity. Taken together, we believe that BE1 is a potential anticancer agent for human lung cancer, which exerts its effect by enhancing apoptosis via regulating autophagy and the p38 pathway.


Assuntos
Betula/química , Neoplasias Pulmonares/tratamento farmacológico , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Transfecção
20.
Nutr Res Pract ; 13(4): 302-309, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31388406

RESUMO

BACKGROUND/OBJECTIVES: Vascular inflammation is an important feature in the atherosclerotic process. Recent studies report that leaves and branches of Carpinus turczaninowii (C. turczaninowii) have antioxidant capacity and exert anti-inflammatory effects. However, no study has reported the regulatory effect of C. turczaninowii extract on the arterial inflammatory response. This study therefore investigated modulation of the arterial inflammatory response after exposure to C. turczaninowii extract, using human aortic vascular smooth muscle cells (HAoSMCs). MATERIALS/METHODS: Scavenging activity of free radicals, total phenolic content (TPC), cell viability, mRNA expressions, and secreted levels of cytokines were measured in LPS-stimulated (10 ng/mL) HAoSMCs treated with the C. turczaninowii extract. RESULTS: C. turczaninowii extract contains high amounts of TPC (225.6 ± 21.0 mg of gallic acid equivalents/g of the extract), as well as exerts time-and dose-dependent increases in strongly scavenged free radicals (average 14.8 ± 1.97 µg/mL IC50 at 40 min). Cell viabilities after exposure to the extracts (1 and 10 µg/mL) were similar to the viability of non-treated cells. Cytokine mRNA expressions were significantly suppressed by the extracts (1 and 10 µg/mL) at 6 hours (h) after exposure. Interleukin-6 secretion was dose-dependently suppressed 2 h after incubation with the extract, at 1-10 µg/mL in non-stimulated cells, and at 5 and 10 µg/mL in LPS-stimulated cells. Similar patterns were also observed at 24 h after incubation with the extract (at 1-10 µg/mL in non-stimulated cells, and at 10 µg/mL in the LPS-stimulated cells). Soluble intracellular vascular adhesion molecules (sICAM-1) secreted from non-stimulated cells and LPS-stimulated cells were similarly suppressed in a dose-dependent manner after 24 h exposure to the extracts, but not after 2 h. In addition, sICAM-1 concentration after 24 h treatment was positively related to IL-6 levels after 2 h and 24 h exposure (r = 0.418, P = 0.003, and r = 0.524, P < 0.001, respectively). CONCLUSIONS: This study demonstrates that C. turczaninowii modulates the arterial inflammatory response, and indicates the potential to be applied as a therapeutic use for atherosclerosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...