Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 770
Filtrar
1.
PLoS Pathog ; 20(9): e1012508, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39303003

RESUMO

Influenza and coronavirus disease 2019 (COVID-19) represent two respiratory diseases that have significantly impacted global health, resulting in substantial disease burden and mortality. An optimal solution would be a combined vaccine capable of addressing both diseases, thereby obviating the need for multiple vaccinations. Previously, we conceived a chimeric protein subunit vaccine targeting both influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), utilizing the receptor binding domain of spike protein (S-RBD) and the stalk region of hemagglutinin protein (HA-stalk) components. By integrating the S-RBD from the SARS-CoV-2 Delta variant with the headless hemagglutinin (HA) from H1N1 influenza virus, we constructed stable trimeric structures that remain accessible to neutralizing antibodies. This vaccine has demonstrated its potential by conferring protection against a spectrum of strains in mouse models. In this study, we designed an mRNA vaccine candidate encoding the chimeric antigen. The resultant humoral and cellular immune responses were meticulously evaluated in mouse models. Furthermore, the protective efficacy of the vaccine was rigorously examined through challenges with either homologous or heterologous influenza viruses or SARS-CoV-2 strains. Our findings reveal that the mRNA vaccine exhibited robust immunogenicity, engendering high and sustained levels of neutralizing antibodies accompanied by robust and persistent cellular immunity. Notably, this vaccine effectively afforded complete protection to mice against H1N1 or heterosubtypic H5N8 subtypes, as well as the SARS-CoV-2 Delta and Omicron BA.2 variants. Additionally, our mRNA vaccine design can be easily adapted from Delta RBD to Omicron RBD antigens, providing protection against emerging variants. The development of two-in-one vaccine targeting both influenza and COVID-19, incorporating the mRNA platform, may provide a versatile approach to combating future pandemics.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Glicoproteínas de Hemaglutininação de Vírus da Influenza , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , Animais , Camundongos , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas de mRNA/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vacinas contra COVID-19/imunologia , Vacinas contra Influenza/imunologia , Anticorpos Antivirais/imunologia , Camundongos Endogâmicos BALB C , Feminino , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Vacinas Sintéticas/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Anticorpos Neutralizantes/imunologia
2.
Chemosphere ; : 143360, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303793

RESUMO

Anaerobic ammonium oxidizing (anammox) bacteria have been proven weak-electroactive. However, the impact of exogenous anthraquinone-2,6-disulfonate (AQDS) on the anammox activity, although it usually plays essential roles in the life activities of many other electroactive microorganisms, is still unknown. Therefore, this study further explored the influences of AQDS on the anammox activity and the interaction mechanism with anammox bacteria, as well as the behaviors of NH4+, NO2-, and NO3-. The results showed that exogenous AQDS increased the ammonium and total nitrogen removal rates by 12.8% and 10.7%, respectively. Interestingly, the conversion from NO2- to NO3- was significantly reduced after adding AQDS, resulting in a 40.1% reduction in NO3- production of anammox process. In this study, we found for the first time that anammox bacteria could not only carry out the conventional anammox process but also perform a weak redox mediators-mediated anammox process, which could achieve the 1:1 consumption of NH4+ and NO2-. The redox mediators-mediated anammox process was related to an endogenous redox mediator (ERM) synthesized and secreted by anammox bacteria, whose redox midpoint potential was around -0.26 V (vs. Ag/AgCl). After adding AQDS, not only the ERM-mediated anammox process was enhanced, but also two novel redox mediators-mediated anammox processes were introduced, including the AQDS-mediated anammox process and ERM-AQDS-mediated anammox process. These three redox mediators-mediated anammox processes significantly improved the nitrogen removal performance of anammox bacteria and reduced energy consumption. These findings will help reduce the dependence of anammox technology on NO2-, reduce the cost of subsequent treatment of NO3-, and provide new visions for optimizing and applying anammox technology.

3.
BMC Musculoskelet Disord ; 25(1): 718, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242516

RESUMO

OBJECTIVE: To systematically review the clinical efficacy (pain, function, quality of life) and safety of platelet-rich plasma (PRP) in the treatment of frozen shoulder through meta-analysis, and provide evidence-based medical evidence for the effectiveness of PRP in the treatment of frozen shoulder. METHODS: A search was conducted on international databases (Pubmed, Web of science, Embase) and Chinese databases (CNKI, Wanfang, VIP) to search the clinical studies on the efficacy of platelet-rich plasma in treating frozen shoulder (adhesive capsulitis/periarthritis/50 shoulder) and their corresponding references published from inception until January 2024. Thoroughly excluded literature not meeting the predetermined inclusion criteria, extracted relevant data from the literature, and input it into RevMan5.4 for meta-analysis. RESULTS: This study ultimately included 14 RCTs, with a total of 1024 patients. The results showed that PRP has significant advantages compared with control groups in VAS (mean difference (MD) =-0.38, 95% confidence interval(CI)(-0.73, -0.03), P = 0.03), UCLA (MD = 3.31, 95% CI (1.02,5.60),P = 0.005), DASH (MD = -4.94,95% CI (-9.34, -0.53),P = 0.03), SPADI (SPADI Total: MD =-16.87, 95% CI (-22.84, -10.91), P < 0.00001; SPADI Pain: MD =-5.38, 95% CI (-7.80, -2.97), P < 0.0001; SPADI Disability: MD =-11.00, 95% CI (-13.61,-8.39), P < 0.00001), and the active and passive Range of Motion (active flexion: MD = 12.70, 95% CI (7.44, 17.95), P < 0.00001; passive flexion: MD = 9.47, 95% CI(3.80, 15.14), P = 0.001; active extension: MD = 3.45, 95% CI(2.39, 4.50), P < 0.00001; active abduction: MD = 13.54, 95% CI(8.42, 18.67), P < 0.00001; passive abduction: MD = 14.26, 95% CI (5.97, 22.56), P = 0.0008; active internal rotation: MD = 5.16, 95% CI (1.84, 8.48), P = 0.002; passive internal rotation: MD = 3.65, 95% CI(1.15, 6.15), P = 0.004; active external rotation: MD = 10.50, 95% CI(5.47, 15.53), P < 0.0001; passive external rotation: MD = 6.00, 95% CI (1.82, 10.19), P = 0.005) except passive extension (MD = 2.25, 95% CI (-0.77, 5.28), P = 0.14). In terms of safety, most studies reported no adverse effects, and only one study reported common complications of joint puncture such as swelling and pain after treatment in both PRP and control groups. Previous studies have shown a risk of osteonecrosis caused by corticosteroids. Therefore, the safety of PRP treatment is more reliable. CONCLUSION: The results showed that PRP was more durable and safer than corticosteroids and other control groups in the treatment of frozen shoulder. STUDY DESIGN: Systematic review. TRIAL REGISTRATION: PROSPERO CRD42022359444, date of registration: 22-09-2022.


Assuntos
Bursite , Plasma Rico em Plaquetas , Amplitude de Movimento Articular , Humanos , Bursite/complicações , Bursite/fisiopatologia , Bursite/terapia , Medição da Dor , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Amplitude de Movimento Articular/fisiologia , Articulação do Ombro/fisiopatologia , Dor de Ombro/diagnóstico , Dor de Ombro/etiologia , Dor de Ombro/fisiopatologia , Dor de Ombro/terapia , Resultado do Tratamento
4.
Adv Sci (Weinh) ; : e2408370, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301938

RESUMO

Hydrogen and hydride materials have long been considered promising materials for high-temperature superconductivity. However, the extreme pressures required for the metallization of hydrogen-based superconductors limit their applications. Here, a series of high-temperature perovskite hydrides is designed that can be stable within 10 GPa. The research covered 182 ternary systems and ultimately determined that eight new compounds are stable within 20 GPa, of which five exhibited superconducting transition temperatures exceeding 120 K within 10 GPa, including KGaH3 (146 K at 10 GPa), RbInH3 (130 K at 6 GPa), CsInH3 (153 K at 9 GPa), RbTlH3 (170 K at 4 GPa) and CsTlH3 (163 K at 7 GPa). Excitingly, KGaH3 and RbGaH3 are thermodynamically stable at 50 GPa. Among these perovskite hydrides, alkali metals are responsible for providing a fixed amount of charge and supporting alloy framework composed of hydrogen and IIIA group elements to maintain stable crystal structure, while the cubic hydrogen alloy framework formed by IIIA group elements and hydrogen is crucial for high-temperature superconductivity. This work will inspire further experimental exploration and take an important step in the exploration of low-pressure stable high-temperature superconductors.

7.
Small ; : e2403295, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39268807

RESUMO

Lead-free perovskite materials have received extensive attention due to their non-toxicity, super environmental stability and adjustable photoelectric properties. However, the inherent problems of low luminous efficiency and low photoluminescence quantum yields (PLQYs) limit its development in multifunctional applications. Here, Te4+ doped Cs2ZrCl6 with high luminous efficiency and stability for multifunctional applications are developed. Te4+ ions are used as emission centers to improve the optical properties of Cs2ZrCl6 to make efficient and stable single-component white light-emitting diodes (WLEDs), and can be used as scintillator materials to improve scintillation performance to achieve high-resolution and low-dose X-ray imaging detection. In addition, it is found for the first time that Te4+ ions can be introduced into the trap center, so that the Cs2ZrCl6:Te4+ perovskite material exhibits excellent persistent luminescence (PersL) and mechanoluminescence (ML) after X-ray radiation, which has potential applications in the fields of delayed imaging and stress sensing. This work provides a method for designing lead-free perovskites with high optical performance and scintillating properties, as well as developing multifunctional applications.

8.
Adv Sci (Weinh) ; : e2403067, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39234800

RESUMO

To investigate how cell elongation impacts extracellular electron transfer (EET) of electroactive microorganisms (EAMs), the division of model EAM Shewanella oneidensis (S. oneidensis) MR-1 is engineered by reducing the formation of cell divisome. Specially, by blocking the translation of division proteins via anti-sense RNAs or expressing division inhibitors, the cellular length and output power density are all increased. Electrophysiological and transcriptomic results synergistically reveal that the programmed cell elongation reinforces EET by enhancing NADH oxidation, inner-membrane quinone pool, and abundance of c-type cytochromes. Moreover, cell elongation enhances hydrophobicity due to decreased cell-surface polysaccharide, thus facilitates the initial surface adhesion stage during biofilm formation. The output current and power density all increase in positive correction with cellular length. However, inhibition of cell division reduces cell growth, which is then restored by quorum sensing-based dynamic regulation of cell growth and elongation phases. The QS-regulated elongated strain thus enables a cell length of 143.6 ± 40.3 µm (72.6-fold of that of S. oneidensis MR-1), which results in an output power density of 248.0 ± 10.6 mW m-2 (3.41-fold of that of S. oneidensis MR-1) and exhibits superior potential for pollutant treatment. Engineering cellular length paves an innovate avenue for enhancing the EET of EAMs.

9.
Opt Lett ; 49(18): 5079-5082, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39270234

RESUMO

Performing pattern recognition via correlation in the optical domain has potential advantages, including: (i) high-speed operation at the line rate and (ii) tunability and scalability by operating on the optical wave properties. Such pattern recognition might be performed on quadrature-phase-shift-keying (QPSK) data transmitted over an optical network, which generally requires using coherent detection to distinguish the phase levels of the correlator output. To enable simpler detection, we combine optical correlation with optical biasing to experimentally demonstrate tunable and scalable QPSK pattern recognition using direct detection. The pattern is applied by adjusting the relative phases of the local pumps. Delayed QPSK signals, a coherent bias tone, and local pumps undergo nonlinear wave-mixing in a periodically poled lithium niobate (PPLN) waveguide to perform optical correlation and biasing. The biased correlator output is captured using direct detection, where the highest power level corresponds only to the pattern. Multiple QPSK pattern recognitions are achieved error-free over 3072 symbols using power thresholding values of (i) 0.78 at a 5-Gbaud rate and 0.73 at a 10-Gbaud rate for 2-symbol pattern recognition and (ii) 0.81 at a 5-Gbaud rate and 0.79 at a 10-Gbaud rate for 3-symbol pattern recognition.

10.
Child Abuse Negl ; 157: 107021, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39276662

RESUMO

BACKGROUND: While sibling bullying victimization has been recognized as a significant factor detrimentally impacting children's subjective well-being, the underlying mechanisms have yet to be fully elucidated. OBJECTIVE: This study seeks to investigate the potential mediating role of perceived social support, encompassing support from family, friend, teacher, and neighbor, as well as the moderating influence of uncertainty avoidance culture. PARTICIPANTS AND SETTING: A sample of 19,328 children was obtained from Wave Three of Children's Worlds: International Survey of Children's Well-being in 13 countries. METHODS: The structural equation model (SEM) was used to investigate the mediating role of perceived social support in the relationship between sibling bullying victimization and children's subjective well-being. The multiple group analysis was carried out to assess the moderating role of uncertainty avoidance culture. RESULTS: This study reveals a negative association between sibling bullying victimization and children's subjective well-being (ß = -0.138, p < 0.001). Perceived support from family, friend, teacher, and neighbor emerges as a mediating mechanism in this relationship. Uncertainty avoidance culture moderates this relationship, and this association is stronger for children raised in a strong uncertainty avoidance culture (ß = -0.085, p < 0.001). CONCLUSIONS: The results of this study contribute to our comprehension of the nexus between sibling bullying victimization and children's subjective well-being. Moreover, this study extends the current body of knowledge by delving into the cultural disparities spanning various countries.

11.
Sci Data ; 11(1): 919, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181877

RESUMO

The Pleurotomarioidea, commonly referred to as slit shells, constitute one of the most ancient and enduring lineages within the phylum Mollusca, with its fossil record tracing back to the Upper Cambrian epoch. Its rareness and evolutionary antiquity surpass even that of the nautilus. In this study, we conducted the first transcriptome sequencing and analyses of Entemnotrochus rumphii (Schepman, 1879), a representative species of Pleurotomarioidea. Full-length transcriptome sequencing of E. rumphii was performed using the PacBio Sequel II platform with SMRT technology. A total of 64.38 gigabytes of data and 964,550 polymerase reads were generated, resulting in 28,068,998 subreads after data filtering. After de-duplication, correction, and clustering, we identified 19,273 genes. Additionally, next-generation sequencing was performed on 11 tissues of E. rumphii. This investigation provides a detailed portrayal and analytical scrutiny of its transcriptomic landscape.


Assuntos
Fósseis , Moluscos , Transcriptoma , Animais , Moluscos/genética , Sequenciamento de Nucleotídeos em Larga Escala
12.
Clin Transl Med ; 14(8): e1812, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39152680

RESUMO

The liver possesses a distinctive capacity for regeneration within the human body. Under normal circumstances, liver cells replicate themselves to maintain liver function. Compensatory replication of healthy hepatocytes is sufficient for the regeneration after acute liver injuries. In the late stage of chronic liver damage, a large number of hepatocytes die and hepatocyte replication is blocked. Liver regeneration has more complex mechanisms, such as the transdifferentiation between cell types or hepatic progenitor cells mediated. Dysregulation of liver regeneration causes severe chronic liver disease. Gaining a more comprehensive understanding of liver regeneration mechanisms would facilitate the advancement of efficient therapeutic approaches. This review provides an overview of the signalling pathways linked to different aspects of liver regeneration in various liver diseases. Moreover, new knowledge on cellular interactions during the regenerative process is also presented. Finally, this paper explores the potential applications of new technologies, such as nanotechnology, stem cell transplantation and organoids, in liver regeneration after injury, offering fresh perspectives on treating liver disease.


Assuntos
Regeneração Hepática , Regeneração Hepática/fisiologia , Humanos , Hepatopatias/terapia , Hepatopatias/fisiopatologia , Comunicação Celular/fisiologia , Fígado/lesões , Hepatócitos/metabolismo , Transdução de Sinais , Animais
13.
Adv Sci (Weinh) ; : e2407599, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159306

RESUMO

Interfacial electron transfer between electroactive microorganisms (EAMs) and electrodes underlies a wide range of bio-electrochemical systems with diverse applications. However, the electron transfer rate at the biotic-electrode interface remains low due to high transmembrane and cell-electrode interfacial electron transfer resistance. Herein, a modular engineering strategy is adopted to construct a Shewanella oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel-electropolymerized anthraquinone to boost cell-electrode interfacial electron transfer. First, a heterologous riboflavin synthesis and secretion pathway is constructed to increase flavin-mediated transmembrane electron transfer. Second, outer membrane c-Cyts OmcF is screened and optimized via protein engineering strategy to accelerate contacted-based transmembrane electron transfer. Third, a S. oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel and electropolymerized anthraquinone is constructed to boost the interfacial electron transfer. As a result, the internal resistance decreased to 42 Ω, 480.8-fold lower than that of the wild-type (WT) S. oneidensis MR-1. The maximum power density reached 4286.6 ± 202.1 mW m-2, 72.8-fold higher than that of WT. Lastly, the engineered biohybrid electrode exhibited superior abilities for bioelectricity harvest, Cr6+ reduction, and CO2 reduction. This study showed that enhancing transmembrane and cell-electrode interfacial electron transfer is a promising way to increase the extracellular electron transfer of EAMs.

14.
PLoS Pathog ; 20(8): e1012487, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39213280

RESUMO

Protective vaccines are crucial for preventing and controlling coronavirus disease 2019 (COVID-19). Updated vaccines are needed to confront the continuously evolving and circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. These vaccines should be safe, effective, amenable to easily scalable production, and affordable. Previously, we developed receptor binding domain (RBD) dimer-based protein subunit vaccines (ZF2001 and updated vaccines) in mammalian cells. In this study, we explored a strategy for producing RBD-dimer immunogens in Pichia pastoris. We found that wild-type P. pastoris produced hyperglycosylated RBD-dimer protein containing four N-glycosylation sites in P. pastoris. Therefore, we engineered the wild type P. pastoris (GS strain) into GSΔOCH1pAO by deleting the OCH1 gene (encoding α-1,6-mannosyltransferase enzyme) to decrease glycosylation, as well as by overexpressing the HIS4 gene (encoding histidine dehydrogenase) to increase histidine synthesis for better growth. In addition, RBD-dimer protein was truncated to remove the R328/F329 cleavage sites in P. pastoris. Several homogeneous RBD-dimer proteins were produced in the GSΔOCH1pAO strain, demonstrating the feasibility of using the P. pastoris expression system. We further resolved the cryo-EM structure of prototype-Beta RBD-dimer complexed with the neutralizing antibody CB6 to reveal the completely exposed immune epitopes of the RBDs. In a murine model, we demonstrated that the yeast-produced RBD-dimer induces robust and protective antibody responses, which is suitable for boosting immunization. This study developed the yeast system for producing SARS-CoV-2 RBD-dimer immunogens, providing a promising platform and pipeline for the future continuous updating and production of SARS-CoV-2 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Animais , Camundongos , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Glicosilação , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Humanos , Anticorpos Neutralizantes/imunologia , Camundongos Endogâmicos BALB C , Anticorpos Antivirais/imunologia , Saccharomycetales/genética , Saccharomycetales/imunologia , Saccharomycetales/metabolismo , Feminino , Pichia/genética , Pichia/metabolismo
15.
Pharmaceutics ; 16(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39204412

RESUMO

Bacillus Calmette-Guérin (BCG) immunotherapy has been a cornerstone treatment for non-muscle-invasive bladder cancer for decades and still faces challenges, such as severe immune adverse reactions, which reduce its use as a first-line treatment. This review examines BCG therapy's history, mechanisms, and current status, highlighting how nanotechnology and bioengineering are revitalizing its application. We discuss novel nanocarrier systems aimed at enhancing BCG's efficacy while mitigating specific side effects. These approaches promise improved tumor targeting, better drug loading, and an enhanced stimulation of anti-tumor immune responses. Key strategies involve using materials such as liposomes, polymers, and magnetic particles to encapsulate BCG or functional BCG cell wall components. Additionally, co-delivering BCG with chemotherapeutics enhances drug targeting and tumor-killing effects while reducing drug toxicity, with some studies even achieving synergistic effects. While most studies remain experimental, this research direction offers hope for overcoming BCG's limitations and advancing bladder cancer immunotherapy. Further elucidation of BCG's mechanisms and rigorous safety evaluations of new delivery systems will be crucial for translating these innovations into clinical practice.

16.
Adv Sci (Weinh) ; 11(35): e2405561, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033541

RESUMO

Achieving superconductivity at room temperature (RT) is a holy grail in physics. Recent discoveries on high-Tc superconductivity in binary hydrides H3S and LaH10 at high pressure have directed the search for RT superconductors to compress hydrides with conventional electron-phonon mechanisms. Here, an exceptional family of superhydrides is predicated under high pressures, MH12 (M = Mg, Sc, Zr, Hf, Lu), all exhibiting RT superconductivity with calculated Tcs ranging from 313 to 398 K. In contrast to H3S and LaH10, the hydrogen sublattice in MH12 is arranged as quasi-atomic H2 units. This unique configuration is closely associated with high Tc, attributed to the high electronic density of states derived from H2 antibonding states at the Fermi level and the strong electron-phonon coupling related to the bending vibration of H2 and H-M-H. Notably, MgH12 and ScH12 remain dynamically stable even at pressure below 100 GPa. The findings offer crucial insights into achieving RT superconductivity and pave the way for innovative directions in experimental research.

17.
Front Oncol ; 14: 1371594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962262

RESUMO

Objectives: Lung cancer is the leading cause of cancer death, and 80-85% of all lung cancer cases are non-small cell lung cancer (NSCLC). Surgical resection is the standard treatment for early-stage NSCLC. However, lung resection, a surgical procedure, can result in complications and increased mortality. Recent studies have shown a significant correlation between complications after lung resection and right ventricular dysfunction. Methods: Transthoracic echocardiography-derived right ventricular-pulmonary artery coupling (RV-PAC) was utilized to assess right ventricular function in these patients. Multivariate logistic regression analysis was also conducted to assess risk factors independently associated with RV-PA uncoupling. The 3- and 5-year cumulative survival rates were estimated with Kaplan-Meier curves, and differences between groups were analyzed using the Mantel-Cox log-rank test. Results: RV-PA uncoupling was defined as a TAPSE/PASP value < 0.67 mm/mm Hg according to spline analysis. The results of multivariable logistic regression analysis indicated that diabetes is an independent risk factor for right ventricular dysfunction after lung resection in patients with NSCLC. Kaplan-Meier analysis revealed a significant decrease in the survival rate of patients with RV-PA uncoupling at both the 3-year follow-up (73% vs 40%, p < 0.001) and 5-year follow-up (64% vs 37%, p < 0.001). Conclusions: After lung resection for NSCLC, the patient's right ventricular function predicts prognosis. Patients with right ventricular dysfunction, particularly those with diabetes mellitus, have a worse prognosis. It is crucial to actively prevent and correct risk factors to reduce the mortality rate in these patients.

18.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3320-3329, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041095

RESUMO

This study investigates the specific mechanisms of Huaier-induced mitochondrial apoptosis in colorectal cancer. HCT116 and SW480 cells were subjected to Huaier treatment. Cell proliferation and migration capabilities were examined through CCK-8 and scratch experiments, respectively. Apoptotic cells were clarified with Annexin-PE staining. DCFH-DA staining, malondialdehyde(MDA), and glutathione(GSH) were used to evaluate the oxidative stress damage level of cells. MitoSOX and JC-1 probes were used to selectively target mitochondria reactive oxygen species(mtROS) and mitochondria membrane potential(MMP) for the evaluation of mitochondria damage. Western blot(WB) experiment was performed to determine apoptosis proteins and PINK1/Parkin pathway. Experiments reveal that in different concentrations of Huaier treatment, the proliferation and migration capabilities of HCT116 and SW480 cells were both restrained. Additionally, mitochondrial apoptosis was activated. Compared with the control group, excessive ROS in colorectal cancer cells was generated in the Huaier group, while MDA increased, and GSH decreased, indicating oxidative stress damage. mtROS increased, and MMP decreased in colorectal cancer cells treated with Huaier, indicating mitochondrial damage. WB result revealed that Huaier suppressed the PINK1/Parkin pathway, hindered the clearance of impaired mitochondria, and subsequently facilitated apoptosis. In conclusion, Huaier impairs colorectal cancer cells through oxidative stress and mitochondria damage. Furthermore, it suppressed the PINK1/Parkin pathway, promoting mitochondria apoptosis in colorectal cancer cells.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
19.
Medicine (Baltimore) ; 103(30): e38980, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058856

RESUMO

Liver cancer with portal vein tumor thrombus (PVTT) is a frequent finding and is related to poor prognosis. Surgical resection provides a more promising prognosis in selected patients. The purpose of this study was to explore the application of 3D (3-dimensional) visualization and image fusion technology in liver cancer with PVTT surgery. 12 patients were treated with surgery between March 2019 and August 2022. The preoperative standard liver volume (SLV), estimated future liver remnant (FLR), FLR/SLV, 3D visualization models, PVTT classification, operation programs, surgical results, and prognosis were collected and analyzed. Twelve patients who had complete data of 3D visualization and underwent hemihepatectomy combined with portal vein tumor thrombectomy. The operation plan was formulated by 3D visualization and was highly consistent with the actual surgery. The SLV was 1208.33 ±â€…63.22 mL, FLR was 734.00 mL and FLR/SLV was 61.62 ±â€…19.38%. The accuracy of classification of PVTT by 3D visualization was 100%, Cheng type Ⅱa (4 cases), Ⅱb (2 cases), Ⅲa (4 cases), and Ⅲb (2 cases). The 3D visualization model was a perfect fusion with the intraoperative live scene and precise guidance for hepatectomy. No patient was suffering from postoperative liver failure and without procedure­associated death. 6 patients died of tumor recurrence, and 2 patients died of other reasons. The 12-month cumulative survival rate was 25.9%. 3D visualization and image fusion technology could be used for precise assessment of FLR, classification of PVTT, surgery navigation, and which was helpful in improving the safety of hepatectomy.


Assuntos
Hepatectomia , Imageamento Tridimensional , Neoplasias Hepáticas , Veia Porta , Trombectomia , Humanos , Veia Porta/cirurgia , Veia Porta/patologia , Veia Porta/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Imageamento Tridimensional/métodos , Hepatectomia/métodos , Trombectomia/métodos , Idoso , Adulto , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/cirurgia , Trombose Venosa/etiologia , Prognóstico , Tomografia Computadorizada por Raios X/métodos
20.
aBIOTECH ; 5(2): 247-261, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974861

RESUMO

Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...