Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 4): 134409, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39097042

RESUMO

Alginate is a linear polysaccharide with a modifiable structure and abundant functional groups, offers immense potential for tailoring diverse alginate-based materials to meet the demands of biomedical applications. Given the advancements in modification techniques, it is significant to analyze and summarize the modification of alginate by physical, chemical and biological methods. These approaches provide plentiful information on the preparation, characterization and application of alginate-based materials. Physical modification generally involves blending and physical crosslinking, while chemical modification relies on chemical reactions, mainly including acylation, sulfation, phosphorylation, carbodiimide coupling, nucleophilic substitution, graft copolymerization, terminal modification, and degradation. Chemical modified alginate contains chemically crosslinked alginate, grafted alginate and oligo-alginate. Biological modification associated with various enzymes to realize the hydrolysis or grafting. These diverse modifications hold great promise in fully harnessing the potential of alginate for its burgeoning biomedical applications in the future. In summary, this review provides a comprehensive discussion and summary of different modification methods applied to improve the properties of alginate while expanding its biomedical potentials.


Assuntos
Alginatos , Materiais Biocompatíveis , Alginatos/química , Materiais Biocompatíveis/química , Humanos , Animais , Hidrólise
2.
J Control Release ; 367: 366-384, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286336

RESUMO

Intranasal drug delivery is as a noninvasive and efficient approach extensively utilized for treating the local, central nervous system, and systemic diseases. Despite numerous reviews delving into the application of intranasal drug delivery across biomedical fields, a comprehensive analysis of advancements and future perspectives remains elusive. This review elucidates the research progress of intranasal drug delivery through a scientometric analysis. It scrutinizes several challenges to bolster research in this domain, encompassing a thorough exploration of entry and elimination mechanisms specific to intranasal delivery, the identification of drugs compatible with the nasal cavity, the selection of dosage forms to surmount limited drug-loading capacity and poor solubility, and the identification of diseases amenable to the intranasal delivery strategy. Overall, this review furnishes a perspective aimed at galvanizing future research and development concerning intranasal drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Cavidade Nasal , Administração Intranasal , Preparações Farmacêuticas
3.
J Nanobiotechnology ; 21(1): 379, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848975

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) with neuronic development and function is a promising therapeutic agent for treating depressive disorder, according to the neurotrophin hypothesis. However, the delivery of BDNF into the brain is not easy as these large protein molecules cannot efficiently cross the blood-brain barrier (BBB) and easily suffer oxidative damage in vivo. Therefore, the quercetin-based alginate nanogels (quercetin nanogels) loaded with BDNF have been developed, which could efficiently bypass the BBB via the nose-to-brain pathway and protect BDNF from oxidative damage, providing an effective route for the therapy of depressive disorders by intranasal delivery. RESULTS: Quercetin nanogels exhibited uniform size distribution, excellent biocompatibility, and potent antioxidant and anti-inflammatory activities. Quercetin nanogels in the thermosensitive gel achieved sustained and controlled release of BDNF with non-Fick's diffusion, exhibited rapid brain distribution, and achieved nearly 50-fold enhanced bioavailability compared to oral quercetin. Quercetin nanogels as a therapeutic drug delivery carrier exerted antidepressant effects on reserpine-induced rats, effectively delivered BDNF to reverse despair behavior in stress-induced mice, and exhibited antidepressant effects on chronic mild unpredictable stimulation (CUMS) rats. These antidepressant effects of BDNF-Quercetin nanogels for CUMS rats are associated with the regulation of the glutamatergic system, PI3K-Akt, and BDNF-TrkB signaling pathway. CONCLUSIONS: In this study, we provide a promising strategy for brain delivery of BDNF for treating depressive disorders, effectively achieved through combining quercetin nanogels and intranasal administration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Quercetina , Ratos , Camundongos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Nanogéis , Alginatos , Fosfatidilinositol 3-Quinases/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Hipocampo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...