Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(5): e0023624, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38572990

RESUMO

Microbes are essential for the functioning of all ecosystems, and as global warming and anthropogenic pollution threaten ecosystems, it is critical to understand how microbes respond to these changes. We investigated the climate response of Sphingomonas, a widespread gram-negative bacterial genus, during an 18-month microbial community reciprocal transplant experiment across a Southern California climate gradient. We hypothesized that after 18 months, the transplanted Sphingomonas clade and functional composition would correspond with site conditions and reflect the Sphingomonas composition of native communities. We extracted Sphingomonas sequences from metagenomic data across the gradient and assessed their clade and functional composition. Representatives of at least 12 major Sphingomonas clades were found at varying relative abundances along the climate gradient, and transplanted Sphingomonas clade composition shifted after 18 months. Site had a significant effect (PERMANOVA; P < 0.001) on the distribution of both Sphingomonas functional (R2 = 0.465) and clade composition (R2 = 0.400), suggesting that Sphingomonas composition depends on climate parameters. Additionally, for both Sphingomonas clade and functional composition, ordinations revealed that the transplanted communities shifted closer to the native Sphingomonas composition of the grassland site compared with the site they were transplanted into. Overall, our results indicate that climate and substrate collectively determine Sphingomonas clade and functional composition.IMPORTANCESphingomonas is the most abundant gram-negative bacterial genus in litter-degrading microbial communities of desert, grassland, shrubland, and forest ecosystems in Southern California. We aimed to determine whether Sphingomonas responds to climate change in the same way as gram-positive bacteria and whole bacterial communities in these ecosystems. Within Sphingomonas, both clade composition and functional genes shifted in response to climate and litter chemistry, supporting the idea that bacteria respond similarly to climate at different scales of genetic variation. This understanding of how microbes respond to perturbation across scales may aid in future predictions of microbial responses to climate change.


Assuntos
Mudança Climática , Microbiologia do Solo , Sphingomonas , Sphingomonas/genética , Sphingomonas/classificação , Sphingomonas/metabolismo , Sphingomonas/isolamento & purificação , California , Ecossistema , Filogenia , Microbiota/genética , Metagenômica , Pradaria
2.
Front Microbiol ; 14: 1146165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138640

RESUMO

Whether microbes show habitat preferences is a fundamental question in microbial ecology. If different microbial lineages have distinct traits, those lineages may occur more frequently in habitats where their traits are advantageous. Sphingomonas is an ideal bacterial clade in which to investigate how habitat preference relates to traits because these bacteria inhabit diverse environments and hosts. Here we downloaded 440 publicly available Sphingomonas genomes, assigned them to habitats based on isolation source, and examined their phylogenetic relationships. We sought to address whether: (1) there is a relationship between Sphingomonas habitat and phylogeny, and (2) whether there is a phylogenetic correlation between key, genome-based traits and habitat preference. We hypothesized that Sphingomonas strains from similar habitats would cluster together in phylogenetic clades, and key traits that improve fitness in specific environments should correlate with habitat. Genome-based traits were categorized into the Y-A-S trait-based framework for high growth yield, resource acquisition, and stress tolerance. We selected 252 high quality genomes and constructed a phylogenetic tree with 12 well-defined clades based on an alignment of 404 core genes. Sphingomonas strains from the same habitat clustered together within the same clades, and strains within clades shared similar clusters of accessory genes. Additionally, key genome-based trait frequencies varied across habitats. We conclude that Sphingomonas gene content reflects habitat preference. This knowledge of how environment and host relate to phylogeny may also help with future functional predictions about Sphingomonas and facilitate applications in bioremediation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...