Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Pediatr Urol ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39227296

RESUMO

INTRODUCTION: Children with higher grades of hydronephrosis often undergo mercaptoacetyltriglycine nuclear renography scans (MAG3) to assess differential renal function (DRF) and drainage. Although MAG3 helps identify the potential need for pyeloplasty, its use incurs increased costs, radiation exposure, and stress for children and families. Several studies demonstrate pyramidal thickness (PT) ≤ 3 mm as a reliable predictive risk factor for pyeloplasty in children with a history of prenatal hydronephrosis. Our hypothesis was that renal sonographic measurements including PT and parenchymal thickness (ParT) correlate with DRF in children with high-grade unilateral hydronephrosis and may be used to better select the need and frequency of MAG3 scans in children at increased risk for diminished relative renal function. The objective of this project was to determine the correlation between sonographic renal measurements and DRF in patients with unilateral hydronephrosis, we assessed: 1) the correlation between PT, ParT, and the ratio of PT/ParT in hydronephrotic kidneys to DRF, 2) the correlation between the ratio of hydronephrotic PT/contralateral non-hydronephrotic PT and DRF, 3) the correlation between the ratio of hydronephrotic ParT/contralateral non-hydronephrotic ParT and DRF, and 4) the correlation between the ratio of (hydronephrotic PT/ParT)/(contralateral non-hydronephrotic PT/ParT) and DRF. MATERIALS AND METHODS: We retrospectively reviewed 71 children with grades 3 or 4 unilateral hydronephrosis. Most patients presented with a history of prenatally detected hydronephrosis at median age (IQR) of 112 days (43-274). Measurements of PT and ParT were completed on 98 renal ultrasounds and DRF was collected from corresponding MAG3 scans. Threshold values were identified visually through scatterplots. Spearman's correlation coefficient and Fisher's p-values were calculated. DISCUSSION: Ratios of PT and ParT in hydronephrotic kidneys to contralateral non-hydronephrotic kidneys were positively correlated with DRF. Ratios of hydronephrotic PT/non-hydronephrotic PT > 0.8 and hydronephrotic ParT/non-hydronephrotic ParT >0.7 occurred more frequently in patients with a DRF >40% (p = 0.11 and p = 0.001, respectively). A PT > 3 mm and ParT >5 mm occurred significantly more frequently in patients with a DRF >40% (p = 0.008 and p = 0.006, respectively). CONCLUSIONS: Renal sonographic measurements including threshold values of PT > 3 mm, ParT > 5 mm, ratio of hydronephrotic PT/contralateral non-hydronephrotic PT (>0.8), and ratio of hydronephrotic ParT/contralateral non-hydronephrotic ParT (>0.7) are good predictors of DRF >40% in unilateral high-grade hydronephrosis. These identified threshold values have potential utility in determining the need for nuclear renal scans in children with high-grade hydronephrosis.

2.
Transl Vis Sci Technol ; 11(9): 17, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36135979

RESUMO

Purpose: Despite popularity of optical coherence tomography (OCT) in glaucoma studies, it's unclear how well OCT-derived metrics compare to traditional measures of retinal ganglion cell (RGC) abundance. Here, Diversity Outbred (J:DO) mice are used to directly compare ganglion cell complex (GCC) thickness measured by OCT to metrics of retinal anatomy measured ex vivo with retinal wholemounts and optic nerve histology. Methods: J:DO mice (n = 48) underwent fundoscopic and OCT examinations, with automated segmentation of GCC thickness. RGC axons were quantified from para-phenylenediamine-stained optic nerve cross-sections and somas from BRN3A-immunolabeled retinal wholemounts, with total inner retinal cellularity assessed by TO-PRO and subsequent hematoxylin staining. Results: J:DO tissues lacked overt disease. GCC thickness, RGC abundance, and total cell abundance varied broadly across individuals. GCC thickness correlated significantly to RGC somal density (r = 0.58) and axon number (r = 0.44), but not total cell density. Retinal area and nerve cross-sectional area varied widely. No metrics were significantly influenced by sex. In bilateral comparisons, GCC thickness (r = 0.95), axon (r = 0.72), and total cell density (r = 0.47) correlated significantly within individuals. Conclusions: Amongst outbred mice, OCT-derived measurements of GCC thickness correlate significantly to RGC somal and axon abundance. Factors limiting correlation are likely both biological and methodological, including differences in retinal area that distort sampling-based estimates of RGC abundance. Translational Relevance: There are significant-but imperfect-correlations between GCC thickness and RGC abundance across genetic contexts in mice, highlighting valid uses and ongoing challenges for meaningful use of OCT-derived metrics.


Assuntos
Glaucoma , Doenças do Nervo Óptico , Animais , Glaucoma/diagnóstico , Hematoxilina , Camundongos , Doenças do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos
3.
Transl Vis Sci Technol ; 10(14): 22, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932117

RESUMO

Purpose: Optic nerve damage is the principal feature of glaucoma and contributes to vision loss in many diseases. In animal models, nerve health has traditionally been assessed by human experts that grade damage qualitatively or manually quantify axons from sampling limited areas from histologic cross sections of nerve. Both approaches are prone to variability and are time consuming. First-generation automated approaches have begun to emerge, but all have significant shortcomings. Here, we seek improvements through use of deep-learning approaches for segmenting and quantifying axons from cross-sections of mouse optic nerve. Methods: Two deep-learning approaches were developed and evaluated: (1) a traditional supervised approach using a fully convolutional network trained with only labeled data and (2) a semisupervised approach trained with both labeled and unlabeled data using a generative-adversarial-network framework. Results: From comparisons with an independent test set of images with manually marked axon centers and boundaries, both deep-learning approaches outperformed an existing baseline automated approach and similarly to two independent experts. Performance of the semisupervised approach was superior and implemented into AxonDeep. Conclusions: AxonDeep performs automated quantification and segmentation of axons from healthy-appearing nerves and those with mild to moderate degrees of damage, similar to that of experts without the variability and constraints associated with manual performance. Translational Relevance: Use of deep learning for axon quantification provides rapid, objective, and higher throughput analysis of optic nerve that would otherwise not be possible.


Assuntos
Aprendizado Profundo , Glaucoma , Traumatismos do Nervo Óptico , Animais , Axônios , Glaucoma/diagnóstico , Camundongos , Nervo Óptico/diagnóstico por imagem
4.
Invest Ophthalmol Vis Sci ; 60(13): 4159-4170, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31598627

RESUMO

Purpose: The purpose of this study was to examine the effect of multiple blast exposures and blast preconditioning on the structure and function of retinal ganglion cells (RGCs), to identify molecular pathways that contribute to RGC loss, and to evaluate the role of kynurenine-3-monooxygenase (KMO) inhibition on RGC structure and function. Methods: Mice were subjected to sham blast injury, one single blast injury, or three blast injuries separated by either 1 hour or 1 week, using a blast intensity of 20 PSI. To examine the effect of blast preconditioning, mice were subjected to sham blast injury, one single 20-PSI injury, or three blast injuries separated by 1 week (5 PSI, 5 PSI, 20 PSI and 5 PSI, 5 PSI, 5 PSI). RGC structure was analyzed by optical coherence tomography (OCT) and function was analyzed by the pattern electroretinogram (PERG). BRN3A-positive cells were quantified to determine RGC density. RNA-seq analysis was used to identify transcriptional changes between groups. Results: Analysis of mice with multiple blast exposures of 20 PSI revealed no significant differences compared to one 20-pounds per square inch (PSI) exposure using OCT, PERG, or BRN3A cell counts. Analysis of mice exposed to two preconditioning 5-PSI blasts prior to one 20-PSI blast showed preservation of RGC structure and function. RNA-seq analysis of the retina identified multiple transcriptomic changes between conditions. Pharmacologic inhibition of KMO preserved RGC responses compared to vehicle-treated mice. Conclusions: Preconditioning protects RGC from blast injury. Protective effects appear to involve changes in KMO activity, whose inhibition is also protective.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/patologia , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Quinurenina 3-Mono-Oxigenase/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Retiniana/etiologia , Células Ganglionares da Retina/efeitos dos fármacos , Tomografia de Coerência Óptica
5.
Sci Rep ; 9(1): 6752, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043676

RESUMO

Chédiak-Higashi syndrome (CHS) is a lethal disorder caused by mutations in the LYST gene that involves progressive neurologic dysfunction. Lyst-mutant mice exhibit neurologic phenotypes that are sensitive to genetic background. On the DBA/2J-, but not on the C57BL/6J-background, Lyst-mutant mice exhibit overt tremor phenotypes associated with loss of cerebellar Purkinje cells. Here, we tested whether assays for ataxia could measure this observed strain-dependency, and if so, establish parameters for empowering phenotype- and candidate-driven approaches to identify genetic modifier(s). A composite phenotypic scoring system distinguished phenotypes in Lyst-mutants and uncovered a previously unrecognized background difference between wild-type C57BL/6J and DBA/2J mice. Accelerating rotarod performance also distinguished phenotypes in Lyst-mutants, but at more advanced ages. These results establish that genetic background, Lyst genotype, and age significantly influence the severity of CHS-associated neurologic deficits. Purkinje cell quantifications likewise distinguished phenotypes of Lyst-mutant mice, as well as background differences between wild-type C57BL/6J and DBA/2J mice. To aid identification of potential genetic modifier genes causing these effects, we searched public datasets for cerebellar-expressed genes that are differentially expressed and/or contain potentially detrimental genetic variants. From these approaches, Nos1, Prdx2, Cbln3, Gnb1, Pttg1 were confirmed to be differentially expressed and leading candidates.


Assuntos
Ataxia Cerebelar/patologia , Síndrome de Chediak-Higashi/complicações , Mutação , Doenças do Sistema Nervoso/patologia , Animais , Ataxia Cerebelar/etiologia , Modelos Animais de Doenças , Feminino , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Doenças do Sistema Nervoso/etiologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...