Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1089759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755702

RESUMO

Cassava (Manihot esculenta Crantz) starch consists of amylopectin and amylose, with its properties determined by the proportion of these two polymers. Waxy starches contain at least 95% amylopectin. In the food industry, waxy starches are advantageous, with pastes that are more stable towards retrogradation, while high-amylose starches are used as resistant starches. This study aimed to associate near-infrared spectrophotometry (NIRS) spectra with the waxy phenotype in cassava seeds and develop an accurate classification model for indirect selection of plants. A total of 1127 F2 seeds were obtained from controlled crosses performed between 77 F1 genotypes (wild-type, Wx_). Seeds were individually identified, and spectral data were obtained via NIRS using a benchtop NIRFlex N-500 and a portable SCiO device spectrometer. Four classification models were assessed for waxy cassava genotype identification: k-nearest neighbor algorithm (KNN), C5.0 decision tree (CDT), parallel random forest (parRF), and eXtreme Gradient Boosting (XGB). Spectral data were divided between a training set (80%) and a testing set (20%). The accuracy, based on NIRFlex N-500 spectral data, ranged from 0.86 (parRF) to 0.92 (XGB). The Kappa index displayed a similar trend as the accuracy, considering the lowest value for the parRF method (0.39) and the highest value for XGB (0.71). For the SCiO device, the accuracy (0.88-0.89) was similar among the four models evaluated. However, the Kappa index was lower than that of the NIRFlex N-500, and this index ranged from 0 (parRF) to 0.16 (KNN and CDT). Therefore, despite the high accuracy these last models are incapable of correctly classifying waxy and non-waxy clones based on the SCiO device spectra. A confusion matrix was performed to demonstrate the classification model results in the testing set. For both NIRS, the models were efficient in classifying non-waxy clones, with values ranging from 96-100%. However, the NIRS differed in the potential to predict waxy genotype class. For the NIRFlex N-500, the percentage ranged from 30% (parRF) to 70% (XGB). In general, the models tended to classify waxy genotypes as non-waxy, mainly SCiO. Therefore, the use of NIRS can perform early selection of cassava seeds with a waxy phenotype.

2.
PLoS One ; 17(1): e0262888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061844

RESUMO

An understanding of cassava starch paste properties (CSPP) can contribute to the selection of clones with differentiated starches. This study aimed to identify genomic regions associated with CSPP using different genome-wide association study (GWAS) methods (MLM, MLMM, and Farm-CPU). The GWAS was performed using 23,078 single-nucleotide polymorphisms (SNPs). The rapid viscoanalyzer (RVA) parameters were pasting temperature (PastTemp), peak viscosity (PeakVisc), hot-paste viscosity (Hot-PVisc), cool-paste viscosity (Cold-PVisc), final viscosity (FinalVis), breakdown (BreDow), and setback (Setback). Broad phenotypic and molecular diversity was identified based on the genomic kinship matrix. The broad-sense heritability estimates (h2) ranged from moderate to high magnitudes (0.66 to 0.76). The linkage disequilibrium (LD) declined to between 0.3 and 2.0 Mb (r2 <0.1) for most chromosomes, except chromosome 17, which exhibited an extensive LD. Thirteen SNPs were found to be significantly associated with CSPP, on chromosomes 3, 8, 17, and 18. Only the BreDow trait had no associated SNPs. The regional marker-trait associations on chromosome 18 indicate a LD block between 2907312 and 3567816 bp and that SNP S18_3081635 was associated with SetBack, FinalVis, and Cold-PVisc (all three GWAS methods) and with Hot-PVisc (MLM), indicating that this SNP can track these four traits simultaneously. The variance explained by the SNPs ranged from 0.13 to 0.18 for SetBack, FinalVis, and Cold-PVisc and from 0.06 to 0.09 for PeakVisc and Hot-PVisc. The results indicated additive effects of the genetic control of Cold-PVisc, FinalVis, Hot-PVisc, and SetBack, especially on the large LD block on chromosome 18. One transcript encoding the glycosyl hydrolase family 35 enzymes on chromosome 17 and one encoding the mannose-p-dolichol utilization defect 1 protein on chromosome 18 were the most likely candidate genes for the regulation of CSPP. These results underline the potential for the assisted selection of high-value starches to improve cassava root quality through breeding programs.


Assuntos
Cromossomos de Plantas/genética , Desequilíbrio de Ligação , Manihot/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Amido/genética , Cromossomos de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Manihot/metabolismo , Amido/biossíntese
3.
Front Plant Sci ; 13: 1071156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589120

RESUMO

Genomic selection has been promising in situations where phenotypic assessments are expensive, laborious, and/or inefficient. This work evaluated the efficiency of genomic prediction methods combined with genetic models in clone and parent selection with the goal of increasing fresh root yield, dry root yield, as well as dry matter content in cassava roots. The bias and predictive ability of the combinations of prediction methods Genomic Best Linear Unbiased Prediction (G-BLUP), Bayes B, Bayes Cπ, and Reproducing Kernel Hilbert Spaces with additive and additive-dominant genetic models were estimated. Fresh and dry root yield exhibited predominantly dominant heritability, while dry matter content exhibited predominantly additive heritability. The combination of prediction methods and genetic models did not show significant differences in the predictive ability for dry matter content. On the other hand, the prediction methods with additive-dominant genetic models had significantly higher predictive ability than the additive genetic models for fresh and dry root yield, allowing higher genetic gains in clone selection. However, higher predictive ability for genotypic values did not result in differences in breeding value predictions between additive and additive-dominant genetic models. G-BLUP with the classical additive-dominant genetic model had the best predictive ability and bias estimates for fresh and dry root yield. For dry matter content, the highest predictive ability was obtained by G-BLUP with the additive genetic model. Dry matter content exhibited the highest heritability, predictive ability, and bias estimates compared with other traits. The prediction methods showed similar selection gains with approximately 67% of the phenotypic selection gain. By shortening the breeding cycle time by 40%, genomic selection may overcome phenotypic selection by 10%, 13%, and 18% for fresh root yield, dry root yield, and dry matter content, respectively, with a selection proportion of 15%. The most suitable genetic model for each trait allows for genomic selection optimization in cassava with high selection gains, thereby accelerating the release of new varieties.

4.
BMC Plant Biol ; 20(1): 164, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293293

RESUMO

BACKGROUND: The granule-bound starch synthase I (GBSSI) enzyme is responsible for the synthesis of amylose, and therefore, its absence results in individuals with a waxy starch phenotype in various amylaceous crops. The validation of mutation points previously associated with the waxy starch phenotype in cassava, as well as the identification of alternative mutant alleles in the GBSSI gene, can allow the development of molecular-assisted selection to introgress the waxy starch mutation into cassava breeding populations. RESULTS: A waxy cassava allele has been identified previously, associated with several SNPs. A particular SNP (intron 11) was used to develop SNAP markers for screening heterozygote types in cassava germplasm. Although the molecular segregation corresponds to the expected segregation at 3:1 ratio (dominant gene for the presence of amylose), the homozygotes containing the SNP associated with the waxy mutation did not show waxy phenotypes. To identify more markers, we sequenced the GBSS gene from 89 genotypes, including some that were segregated from a cross with a line carrying the known waxy allele. As a result, 17 mutations in the GBSSI gene were identified, in which only the deletion in exon 6 (MeWxEx6-del-C) was correlated with the waxy phenotype. The evaluation of mutation points by discriminant analysis of principal component analysis (DAPC) also did not completely discriminate the waxy individuals. Therefore, we developed Kompetitive Allele Specific PCR (KASP) markers that allowed discrimination between WX and wx alleles. The results demonstrated the non-existence of heterozygous individuals of the MeWxEx6-del-C deletion in the analyzed germplasm. Therefore, the deletion MeWxEx6-del-C should not be used for assisted selection in genetic backgrounds different from the original source of waxy starch. Also, the alternative SNPs identified in this study were not associated with the waxy phenotype when compared to a panel of accessions with high genetic diversity. CONCLUSION: Although the GBSSI gene can exhibit several mutations in cassava, only the deletion in exon 6 (MeWxEx6-del-C) was correlated with the waxy phenotype in the original AM206-5 source.


Assuntos
Manihot/genética , Ceras , Alelos , Amilopectina/genética , Amilose/genética , Sequência de Bases , Genótipo , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Amido , Sintase do Amido/genética
5.
PLoS One ; 14(11): e0224920, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725759

RESUMO

Genomic selection (GS) has been used to optimize genetic gains when phenotypic selection is considered costly and difficult to measure. The objective of this work was to evaluate the efficiency and consistency of GS prediction for cassava yield traits (Manihot esculenta Crantz) using different methods, taking into account the effect of population structure. BLUPs and deregressed BLUPs were obtained for 888 cassava accessions and evaluated for fresh root yield, dry root yield and dry matter content in roots in 21 trials conducted from 2011 to 2016. The deregressed BLUPs obtained for the accessions from a 48K single nucleotide polymorphism dataset were used for genomic predictions based on the BayesB, BLASSO, RR-BLUP, G-BLUP and RKHS methods. The accessions' BLUPs were used in the validation step using four cross-validation strategies, taking into account population structure and different GS methods. Similar estimates of predictive ability and bias were identified for the different genomic selection methods in the first cross-validation strategy. Lower predictive ability was observed for fresh root yield (0.4569 -RR-BLUP to 0.4756-RKHS) and dry root yield (0.4689 -G-BLUP to 0.4818-RKHS) in comparison with dry matter content (0.5655 -BLASSO to 0.5670 -RKHS). However, the RKHS method exhibited higher efficiency and consistency in most of the validation scenarios in terms of prediction ability for fresh root yield and dry root yield. The correlations of the genomic estimated breeding values between the genomic selection methods were quite high (0.99-1.00), resulting in high coincidence of clone selection regardless of the genomic selection method. The deviance analyses within and between the validation clusters formed by the discriminant analysis of principal components were significant for all traits. Therefore, this study indicated that i) the prediction of dry matter content was more accurate compared to that of yield traits, possibly as a result of the smaller influence of non-additive genetic effects; ii) the RKHS method resulted in high and stable prediction ability in most of the validation scenarios; and iii) some kinship between the validation and training populations is desirable in order for genomic selection to succeed due to the significant effect of population structure on genomic selection predictions.


Assuntos
Genômica/métodos , Manihot/crescimento & desenvolvimento , Manihot/genética , Característica Quantitativa Herdável , Análise por Conglomerados , Modelos Genéticos , Melhoramento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...