Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2022: 5266211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872869

RESUMO

Photobiomodulation therapy associated with conventional antivenom treatment has been shown to be effective in reducing the local effects caused by bothropic venoms in preclinical studies. In this study, we analyzed the influence of photobiomodulation using light emitting diode (LED) on the oxidative stress produced by murine macrophages stimulated with Bothrops jararacussu venom and it isolated toxins BthTX-I and BthTX-II. Under LED treatment, we evaluated the activity of the antioxidant enzymes catalase, superoxide dismutase, and peroxidase as well as the release of hydrogen peroxide and the enzyme lactate dehydrogenase. To investigate whether NADPH oxidase complex activation and mitochondrial pathways could contribute to hydrogen peroxide production by macrophages, we tested the effect of two selective inhibitors, apocynin and CCCP3, respectively. Our results showed that LED therapy was able to decrease the production of hydrogen peroxide and the liberation of lactate dehydrogenase, indicating less cell damage. In addition, the antioxidant enzymes catalase, superoxide dismutase, and peroxidase increased in response to LED treatment. The effect of LED treatment on macrophages was inhibited by CCCP3, but not by apocynin. These findings show that LED photobiomodulation treatment protects macrophages, at least in part, by reducing oxidative stress caused B. jararacussu venom and toxins.


Assuntos
Venenos de Crotalídeos , Macrófagos , Animais , Antioxidantes/farmacologia , Bothrops , Catalase , Venenos de Crotalídeos/farmacologia , Peróxido de Hidrogênio/farmacologia , Lactato Desidrogenases , Macrófagos/efeitos dos fármacos , Camundongos , Oxirredução , Estresse Oxidativo , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...