Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108624, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38174321

RESUMO

The transcription factor Shavenbaby (Svb), the only member of the OvoL family in Drosophila, controls the fate of various epithelial embryonic cells and adult stem cells. Post-translational modification of Svb produces two protein isoforms, Svb-ACT and Svb-REP, which promote adult intestinal stem cell renewal or differentiation, respectively. To define Svb mode of action, we used engineered cell lines and develop an unbiased method to identify Svb target genes across different contexts. Within a given cell type, Svb-ACT and Svb-REP antagonistically regulate the expression of a set of target genes, binding specific enhancers whose accessibility is constrained by chromatin landscape. Reciprocally, Svb-REP can influence local chromatin marks of active enhancers to help repressing target genes. Along the intestinal lineage, the set of Svb target genes progressively changes, together with chromatin accessibility. We propose that Svb-ACT-to-REP transition promotes enterocyte differentiation of intestinal stem cells through direct gene regulation and chromatin remodeling.

2.
EMBO Rep ; 24(4): e55362, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36722816

RESUMO

During neuronal development, extensive changes to chromatin states occur to regulate lineage-specific gene expression. The molecular factors underlying the repression of non-neuronal genes in differentiated neurons are poorly characterised. The Mi2/NuRD complex is a multiprotein complex with nucleosome remodelling and histone deacetylase activity. Whilst NuRD has previously been implicated in the development of nervous system tissues, the precise nature of the gene expression programmes that it coordinates is ill-defined. Furthermore, evidence from several species suggests that Mi-2 may be incorporated into multiple complexes that may not possess histone deacetylase activity. We show that Mi-2 activity is required for suppressing ectopic expression of germline genes in neurons independently of HDAC1/NuRD, whilst components of NuRD, including Mi-2, regulate neural gene expression to ensure proper development of the larval nervous system. We find that Mi-2 binding in the genome is dynamic during neuronal maturation, and Mi-2-mediated repression of ectopic gene expression is restricted to the early stages of neuronal development, indicating that Mi-2/NuRD is required for establishing stable neuronal transcriptomes during the early stages of neuronal differentiation.


Assuntos
Expressão Ectópica do Gene , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Histona Desacetilases/metabolismo , Cromatina/genética , Nucleossomos
3.
Cell Rep ; 39(3): 110679, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443165

RESUMO

Adult stem cells coordinate intrinsic and extrinsic, local and systemic, cues to maintain the proper balance between self-renewal and differentiation. However, the precise mechanisms stem cells use to integrate these signals remain elusive. Here, we show that Escargot (Esg), a member of the Snail family of transcription factors, regulates the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis by attenuating the activity of the pro-differentiation insulin receptor (InR) pathway. Esg positively regulates the expression of an antagonist of insulin signaling, ImpL2, while also attenuating the expression of InR. Furthermore, Esg-mediated repression of the InR pathway is required to suppress CySC loss in response to starvation. Given the conservation of Snail-family transcription factors, characterizing the mechanisms by which Esg regulates cell-fate decisions during homeostasis and a decline in nutrient availability is likely to provide insight into the metabolic regulation of stem cell behavior in other tissues and organisms.


Assuntos
Células-Tronco Adultas , Proteínas de Drosophila , Células-Tronco Adultas/metabolismo , Animais , Diferenciação Celular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Masculino , Receptor de Insulina/metabolismo , Testículo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Elife ; 112022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363137

RESUMO

The ability to control transgene expression, both spatially and temporally, is essential for studying model organisms. In Drosophila, spatial control is primarily provided by the GAL4/UAS system, whilst temporal control relies on a temperature-sensitive GAL80 (which inhibits GAL4) and drug-inducible systems. However, these are not ideal. Shifting temperature can impact on many physiological and behavioural traits, and the current drug-inducible systems are either leaky, toxic, incompatible with existing GAL4-driver lines, or do not generate effective levels of expression. Here, we describe the auxin-inducible gene expression system (AGES). AGES relies on the auxin-dependent degradation of a ubiquitously expressed GAL80, and therefore, is compatible with existing GAL4-driver lines. Water-soluble auxin is added to fly food at a low, non-lethal, concentration, which induces expression comparable to uninhibited GAL4 expression. The system works in both larvae and adults, providing a stringent, non-lethal, cost-effective, and convenient method for temporally controlling GAL4 activity in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Animais Geneticamente Modificados , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica , Ácidos Indolacéticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Nature ; 601(7894): 630-636, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987221

RESUMO

The Drosophila brain is a frequently used model in neuroscience. Single-cell transcriptome analysis1-6, three-dimensional morphological classification7 and electron microscopy mapping of the connectome8,9 have revealed an immense diversity of neuronal and glial cell types that underlie an array of functional and behavioural traits in the fly. The identities of these cell types are controlled by gene regulatory networks (GRNs), involving combinations of transcription factors that bind to genomic enhancers to regulate their target genes. Here, to characterize GRNs at the cell-type level in the fly brain, we profiled the chromatin accessibility of 240,919 single cells spanning 9 developmental timepoints and integrated these data with single-cell transcriptomes. We identify more than 95,000 regulatory regions that are used in different neuronal cell types, of which 70,000 are linked to developmental trajectories involving neurogenesis, reprogramming and maturation. For 40 cell types, uniquely accessible regions were associated with their expressed transcription factors and downstream target genes through a combination of motif discovery, network inference and deep learning, creating enhancer GRNs. The enhancer architectures revealed by DeepFlyBrain lead to a better understanding of neuronal regulatory diversity and can be used to design genetic driver lines for cell types at specific timepoints, facilitating their characterization and manipulation.


Assuntos
Drosophila , Regulação da Expressão Gênica , Animais , Encéfalo/metabolismo , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Fatores de Transcrição/metabolismo
6.
Nat Aging ; 2(12): 1176-1190, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-37118537

RESUMO

A transient, homeostatic transcriptional response can result in transcriptional memory, programming subsequent transcriptional outputs. Transcriptional memory has great but unappreciated potential to alter animal aging as animals encounter a multitude of diverse stimuli throughout their lifespan. Here we show that activating an evolutionarily conserved, longevity-promoting transcription factor, dFOXO, solely in early adulthood of female fruit flies is sufficient to improve their subsequent health and survival in midlife and late life. This youth-restricted dFOXO activation causes persistent changes to chromatin landscape in the fat body and requires chromatin remodelers such as the SWI/SNF and ISWI complexes to program health and longevity. Chromatin remodeling is accompanied by a long-lasting transcriptional program that is distinct from that observed during acute dFOXO activation and includes induction of Xbp1. We show that this later-life induction of Xbp1 is sufficient to curtail later-life mortality. Our study demonstrates that transcriptional memory can profoundly alter how animals age.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Drosophila , Animais , Feminino , Montagem e Desmontagem da Cromatina/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica , Drosophila/metabolismo , Cromatina/genética , Proteínas de Ligação a DNA/genética
7.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34397094

RESUMO

The epidermis of Caenorhabditis elegans is an essential tissue for survival because it contributes to the formation of the cuticle barrier as well as facilitating developmental progression and animal growth. Most of the epidermis consists of the hyp7 hypodermal syncytium, the nuclei of which are largely generated by the seam cells, which exhibit stem cell-like behaviour during development. How seam cell progenitors differ transcriptionally from the differentiated hypodermis is poorly understood. Here, we introduce Targeted DamID (TaDa) in C. elegans as a method for identifying genes expressed within a tissue of interest without cell isolation. We show that TaDa signal enrichment profiles can be used to identify genes transcribed in the epidermis and use this method to resolve differences in gene expression between the seam cells and the hypodermis. Finally, we predict and functionally validate new transcription and chromatin factors acting in seam cell development. These findings provide insights into cell type-specific gene expression profiles likely associated with epidermal cell fate patterning.


Assuntos
Células Epidérmicas/citologia , Células Epidérmicas/metabolismo , Perfilação da Expressão Gênica/métodos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular , Linhagem da Célula , Cromatina/genética , Cromatina/metabolismo , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Nat Cell Biol ; 23(5): 485-496, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972729

RESUMO

Coordination of stem cell function by local and niche-derived signals is essential to preserve adult tissue homeostasis and organismal health. The vasculature is a prominent component of multiple stem cell niches. However, its role in adult intestinal homeostasis remains largely understudied. Here we uncover a previously unrecognised crosstalk between adult intestinal stem cells in Drosophila and the vasculature-like tracheal system, which is essential for intestinal regeneration. Following damage to the intestinal epithelium, gut-derived reactive oxygen species activate tracheal HIF-1α and bidirectional FGF/FGFR signalling, leading to reversible remodelling of gut-associated terminal tracheal cells and intestinal stem cell proliferation following damage. Unexpectedly, reactive oxygen species-induced adult tracheal plasticity involves downregulation of the tracheal specification factor trachealess (trh) and upregulation of IGF2 messenger RNA-binding protein (IGF2BP2/Imp). Our results reveal an intestine-vasculature inter-organ communication programme that is essential to adapt the stem cell response to the proliferative demands of the intestinal epithelium.


Assuntos
Adaptação Fisiológica/fisiologia , Células-Tronco Adultas/metabolismo , Homeostase/fisiologia , Células-Tronco/metabolismo , Animais , Drosophila/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Nicho de Células-Tronco/fisiologia
9.
G3 (Bethesda) ; 11(1)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33561239

RESUMO

Targeted DamID (TaDa) is an increasingly popular method of generating cell-type-specific DNA-binding profiles in vivo. Although sensitive and versatile, TaDa requires the generation of new transgenic fly lines for every protein that is profiled, which is both time-consuming and costly. Here, we describe the FlyORF-TaDa system for converting an existing FlyORF library of inducible open reading frames (ORFs) to TaDa lines via a genetic cross, with recombinant progeny easily identifiable by eye color. Profiling the binding of the H3K36me3-associated chromatin protein MRG15 in larval neural stem cells using both FlyORF-TaDa and conventional TaDa demonstrates that new lines generated using this system provide accurate and highly reproducible DamID-binding profiles. Our data further show that MRG15 binds to a subset of active chromatin domains in vivo. Courtesy of the large coverage of the FlyORF library, the FlyORF-TaDa system enables the easy creation of TaDa lines for 74% of all transcription factors and chromatin-modifying proteins within the Drosophila genome.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Cromatina , Proteínas Cromossômicas não Histona , DNA , Metilação de DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ligação Proteica
10.
G3 (Bethesda) ; 10(12): 4459-4471, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33051260

RESUMO

Epigenetic silencing by Polycomb group (PcG) complexes can promote epithelial-mesenchymal transition (EMT) and stemness and is associated with malignancy of solid cancers. Here we report a role for Drosophila PcG repression in a partial EMT event that occurs during wing disc eversion, an early event during metamorphosis. In a screen for genes required for eversion we identified the PcG genes Sexcombs extra (Sce) and Sexcombs midleg (Scm) Depletion of Sce or Scm resulted in internalized wings and thoracic clefts, and loss of Sce inhibited the EMT of the peripodial epithelium and basement membrane breakdown, ex vivo. Targeted DamID (TaDa) using Dam-Pol II showed that Sce knockdown caused a genomic transcriptional response consistent with a shift toward a more stable epithelial fate. Surprisingly only 17 genes were significantly upregulated in Sce-depleted cells, including Abd-B, abd-A, caudal, and nubbin Each of these loci were enriched for Dam-Pc binding. Of the four genes, only Abd-B was robustly upregulated in cells lacking Sce expression. RNAi knockdown of all four genes could partly suppress the Sce RNAi eversion phenotype, though Abd-B had the strongest effect. Our results suggest that in the absence of continued PcG repression peripodial cells express genes such as Abd-B, which promote epithelial state and thereby disrupt eversion. Our results emphasize the important role that PcG suppression can play in maintaining cell states required for morphogenetic events throughout development and suggest that PcG repression of Hox genes may affect epithelial traits that could contribute to metastasis.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas do Grupo Polycomb , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Transição Epitelial-Mesenquimal/genética , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb/genética
11.
Biol Open ; 9(5)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493733

RESUMO

The remarkable diversity of neurons in the nervous system is generated during development, when properties such as cell morphology, receptor profiles and neurotransmitter identities are specified. In order to gain a greater understanding of neurotransmitter specification we profiled the transcription state of cholinergic, GABAergic and glutamatergic neurons in vivo at three developmental time points. We identified 86 differentially expressed transcription factors that are uniquely enriched, or uniquely depleted, in a specific neurotransmitter type. Some transcription factors show a similar profile across development, others only show enrichment or depletion at specific developmental stages. Profiling of Acj6 (cholinergic enriched) and Ets65A (cholinergic depleted) binding sites in vivo reveals that they both directly bind the ChAT locus, in addition to a wide spectrum of other key neuronal differentiation genes. We also show that cholinergic enriched transcription factors are expressed in mostly non-overlapping populations in the adult brain, implying the absence of combinatorial regulation of neurotransmitter fate in this context. Furthermore, our data underlines that, similar to Caenorhabditis elegans, there are no simple transcription factor codes for neurotransmitter type specification.This article has an associated First Person interview with the first author of the paper.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurotransmissores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Biomarcadores , Proteínas de Drosophila/genética , Perfilação da Expressão Gênica , Modelos Biológicos , Neurônios/metabolismo
12.
Elife ; 92020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255428

RESUMO

Condensin complexes are essential for mitotic chromosome assembly and segregation during cell divisions, however, little is known about their functions in post-mitotic cells. Here we report a role for the condensin I subunit Cap-G in Drosophila neurons. We show that, despite not requiring condensin for mitotic chromosome compaction, post-mitotic neurons express Cap-G. Knockdown of Cap-G specifically in neurons (from their birth onwards) results in developmental arrest, behavioural defects, and dramatic gene expression changes, including reduced expression of a subset of neuronal genes and aberrant expression of genes that are not normally expressed in the developing brain. Knockdown of Cap-G in mature neurons results in similar phenotypes but to a lesser degree. Furthermore, we see dynamic binding of Cap-G at distinct loci in progenitor cells and differentiated neurons. Therefore, Cap-G is essential for proper gene expression in neurons and plays an important role during the early stages of neuronal development.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Mitose/genética , Complexos Multiproteicos/metabolismo , Neurônios/citologia , Adenosina Trifosfatases/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Masculino , Complexos Multiproteicos/genética
13.
Cell Rep ; 27(10): 3019-3033.e5, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167145

RESUMO

Homeostatic renewal and stress-related tissue regeneration rely on stem cell activity, which drives the replacement of damaged cells to maintain tissue integrity and function. The Jun N-terminal kinase (JNK) signaling pathway has been established as a critical regulator of tissue homeostasis both in intestinal stem cells (ISCs) and mature enterocytes (ECs), while its chronic activation has been linked to tissue degeneration and aging. Here, we show that JNK signaling requires the stress-inducible transcription factor Ets21c to promote tissue renewal in Drosophila. We demonstrate that Ets21c controls ISC proliferation as well as EC apoptosis through distinct sets of target genes that orchestrate cellular behaviors via intrinsic and non-autonomous signaling mechanisms. While its loss appears dispensable for development and prevents epithelial aging, ISCs and ECs demand Ets21c function to mount cellular responses to oxidative stress. Ets21c thus emerges as a vital regulator of proliferative homeostasis in the midgut and a determinant of the adult healthspan.


Assuntos
Envelhecimento , Proteínas de Drosophila/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Apoptose , Proliferação de Células , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas do Ovo/metabolismo , Enterócitos/citologia , Enterócitos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Mucosa Intestinal/citologia , Longevidade , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
14.
Development ; 146(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877125

RESUMO

The interaction of proteins and RNA with chromatin underlies the regulation of gene expression. The ability to profile easily these interactions is fundamental for understanding chromatin biology in vivo DNA adenine methyltransferase identification (DamID) profiles genome-wide protein-DNA interactions without antibodies, fixation or protein pull-downs. Recently, DamID has been adapted for applications beyond simple assaying of protein-DNA interactions, such as for studying RNA-chromatin interactions, chromatin accessibility and long-range chromosome interactions. Here, we provide an overview of DamID and introduce improvements to the technology, discuss their applications and compare alternative methodologies.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Técnicas Genéticas , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Animais , Sítios de Ligação/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Genômica , Humanos , Camundongos , Ligação Proteica , Ribossomos/metabolismo , Análise de Sequência de DNA
15.
Dis Model Mech ; 12(4)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30910908

RESUMO

The Drosophila fat body is the primary organ of energy storage as well as being responsible for the humoral response to infection. Its physiological function is of critical importance to the survival of the organism; however, many molecular regulators of its function remain ill-defined. Here, we show that the Drosophila melanogaster bromodomain-containing protein FS(1)H is required in the fat body for normal lifespan as well as metabolic and immune homeostasis. Flies lacking fat body fs(1)h exhibit short lifespan, increased expression of immune target genes, an inability to metabolize triglyceride, and low basal AKT activity, mostly resulting from systemic defects in insulin signalling. Removal of a single copy of the AKT-responsive transcription factor foxo normalises lifespan, metabolic function, uninduced immune gene expression and AKT activity. We suggest that the promotion of systemic insulin signalling activity is a key in vivo function of fat body fs(1)h This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Drosophila melanogaster/genética , Ativação Enzimática , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica , Hipoglicemia/patologia , Insulina/metabolismo , Longevidade , Fenótipo , Análise de Sobrevida , Triglicerídeos/metabolismo
16.
Elife ; 82019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30694180

RESUMO

Spatial and temporal cues are required to specify neuronal diversity, but how these cues are integrated in neural progenitors remains unknown. Drosophila progenitors (neuroblasts) are a good model: they are individually identifiable with relevant spatial and temporal transcription factors known. Here we test whether spatial/temporal factors act independently or sequentially in neuroblasts. We used Targeted DamID to identify genomic binding sites of the Hunchback temporal factor in two neuroblasts (NB5-6 and NB7-4) that make different progeny. Hunchback targets were different in each neuroblast, ruling out the independent specification model. Moreover, each neuroblast had distinct open chromatin domains, which correlated with differential Hb-bound loci in each neuroblast. Importantly, the Gsb/Pax3 spatial factor, expressed in NB5-6 but not NB7-4, had genomic binding sites correlated with open chromatin in NB5-6, but not NB7-4. Our data support a model in which early-acting spatial factors like Gsb establish neuroblast-specific open chromatin domains, leading to neuroblast-specific temporal factor binding and the production of different neurons in each neuroblast lineage.


Assuntos
Cromatina/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/genética , Fator de Transcrição PAX3/genética , Transativadores/genética , Fatores de Transcrição/genética , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Linhagem da Célula/genética , Proliferação de Células , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Modelos Biológicos , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX3/metabolismo , Ligação Proteica , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
17.
Development ; 145(20)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30185410

RESUMO

The precise control of gene expression by transcription factor networks is crucial to organismal development. The predominant approach for mapping transcription factor-chromatin interactions has been chromatin immunoprecipitation (ChIP). However, ChIP requires a large number of homogeneous cells and antisera with high specificity. A second approach, DamID, has the drawback that high levels of Dam methylase are toxic. Here, we modify our targeted DamID approach (TaDa) to enable cell type-specific expression in mammalian systems, generating an inducible system (mammalian TaDa or MaTaDa) to identify genome-wide protein/DNA interactions in 100 to 1000 times fewer cells than ChIP-based approaches. We mapped the binding sites of two key pluripotency factors, OCT4 and PRDM14, in mouse embryonic stem cells, epiblast-like cells and primordial germ cell-like cells (PGCLCs). PGCLCs are an important system for elucidating primordial germ cell development in mice. We monitored PRDM14 binding during the specification of PGCLCs, identifying direct targets of PRDM14 that are key to understanding its crucial role in PGCLC development. We show that MaTaDa is a sensitive and accurate method for assessing cell type-specific transcription factor binding in limited numbers of cells.


Assuntos
Metilação de DNA/genética , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Cromatina/metabolismo , Proteínas de Ligação a DNA , Genoma , Células Germinativas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA
18.
Elife ; 72018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29481322

RESUMO

During development eukaryotic gene expression is coordinated by dynamic changes in chromatin structure. Measurements of accessible chromatin are used extensively to identify genomic regulatory elements. Whilst chromatin landscapes of pluripotent stem cells are well characterised, chromatin accessibility changes in the development of somatic lineages are not well defined. Here we show that cell-specific chromatin accessibility data can be produced via ectopic expression of E. coli Dam methylase in vivo, without the requirement for cell-sorting (CATaDa). We have profiled chromatin accessibility in individual cell-types of Drosophila neural and midgut lineages. Functional cell-type-specific enhancers were identified, as well as novel motifs enriched at different stages of development. Finally, we show global changes in the accessibility of chromatin between stem-cells and their differentiated progeny. Our results demonstrate the dynamic nature of chromatin accessibility in somatic tissues during stem cell differentiation and provide a novel approach to understanding gene regulatory mechanisms underlying development.


Assuntos
Diferenciação Celular , Cromatina/metabolismo , Drosophila/embriologia , Epigênese Genética , Células-Tronco Pluripotentes/fisiologia , Animais , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Coloração e Rotulagem
19.
Cell Rep ; 21(10): 2911-2925, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212035

RESUMO

Longitudinals lacking (lola) is one of the most complex genes in Drosophila melanogaster, encoding up to 20 protein isoforms that include key transcription factors involved in axonal pathfinding and neural reprogramming. Most previous studies have employed loss-of-function alleles that disrupt lola common exons, making it difficult to delineate isoform-specific functions. To overcome this issue, we have generated isoform-specific mutants for all isoforms using CRISPR/Cas9. This enabled us to study specific isoforms with respect to previously characterized roles for Lola and to demonstrate a specific function for one variant in axon guidance via activation of the microtubule-associated factor Futsch. Importantly, we also reveal a role for a second variant in preventing neurodegeneration via the positive regulation of a key enzyme of the octopaminergic pathway. Thus, our comprehensive study expands the functional repertoire of Lola functions, and it adds insights into the regulatory control of neurotransmitter expression in vivo.


Assuntos
Proteínas de Drosophila/metabolismo , Oxigenases de Função Mista/metabolismo , Animais , Western Blotting , Drosophila , Drosophila melanogaster , Hibridização In Situ , Octopamina/metabolismo , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo
20.
Nat Protoc ; 11(9): 1586-98, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27490632

RESUMO

This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.


Assuntos
Separação Celular/métodos , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , Metilação de DNA , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genômica , Ligação Proteica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...