RESUMO
BACKGROUND: Soil salinity is a problem in more than 100 countries across all continents. It is one of the abiotic stress that threatens agriculture the most, negatively affecting crops and reducing productivity. Transcriptomics is a technology applied to characterize the transcriptome in a cell, tissue, or organism at a given time via RNA-Seq, also known as full-transcriptome shotgun sequencing. This technology allows the identification of most genes expressed at a particular stage, and different isoforms are separated and transcript expression levels measured. Once determined by this technology, the expression profile of a gene must undergo validation by another, such as quantitative real-time PCR (qRT-PCR). This study aimed to select, annotate, and validate stress-inducible genes-and their promoters-differentially expressed in the leaves of oil palm (Elaeis guineensis) plants under saline stress. RESULTS: The transcriptome analysis led to the selection of 14 genes that underwent structural and functional annotation, besides having their expression validated using the qRT-PCR technique. When compared, the RNA-Seq and qRT-PCR profiles of those genes resulted in some inconsistencies. The structural and functional annotation analysis of proteins coded by the selected genes showed that some of them are orthologs of genes reported as conferring resistance to salinity in other species. There were those coding for proteins related to the transport of salt into and out of cells, transcriptional regulatory activity, and opening and closing of stomata. The annotation analysis performed on the promoter sequence revealed 22 distinct types of cis-acting elements, and 14 of them are known to be involved in abiotic stress. CONCLUSION: This study has helped validate the process of an accurate selection of genes responsive to salt stress with a specific and predefined expression profile and their promoter sequence. Its results also can be used in molecular-genetics-assisted breeding programs. In addition, using the identified genes is a window of opportunity for strategies trying to relieve the damages arising from the salt stress in many glycophyte crops with economic importance.
Assuntos
Arecaceae , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Estresse Salino/genética , Perfilação da Expressão Gênica , Arecaceae/genética , TranscriptomaRESUMO
Oil palm (Elaeis guineensis Jacq.) is a oilseed crop of great economic importance drastically affected by abiotic stresses. MicroRNAs (miRNAs) play crucial roles in transcription and post-transcription regulation of gene expression, being essential molecules in the response of plants to abiotic stress. To better understand the molecular mechanisms behind the response of young oil palm plants to drought stress, this study reports on the prediction and characterization of miRNAs and their putative target genes in the apical leaf of plants subjected to 14 days of water deprivation. Then, the data from this study were compared to the data from a similar study that focused on salinity stress. Both, the drought-and salt-responsive miRNAs and their putative target genes underwent correlation analysis to identify similarities and dissimilarities among them. Among the 81 identified miRNAs, 29 are specific for oil palm, including two (egu-miR28ds and egu-miR29ds) new ones - described for the first time. As for the expression profile, 62 miRNAs were significantly differentially expressed under drought stress, being five up-regulated (miR396e, miR159b, miR529b, egu-miR19sds, and egu-miR29ds) and 57 down-regulated. Transcription factors, such as MYBs, HOXs, and NF-Ys, were predicted as putative miRNA-target genes in oil palm under water deprivation; making them the most predominant group of such genes. Finally, the correlation analysis study revealed a group of putative target genes with similar behavior under salt and drought stresses. Those genes that are upregulated by these two abiotic stresses encode lncRNAs and proteins linked to stress tolerance, stress memory, modulation of ROS signaling, and defense response regulation to abiotic and biotic stresses. In summary, this study provides molecular evidence for the possible involvement of miRNAs in the drought stress response in oil palm. Besides, it shows that, at the molecular level, there are many similarities in the response of young oil palm plants to these two abiotic stresses.
RESUMO
Oil palm (Elaeis guineensis Jacq.) is the number one source of consumed vegetable oil nowadays. It is cultivated in areas of tropical rainforest, where it meets its natural condition of high rainfall throughout the year. The palm oil industry faces criticism due to a series of practices that was considered not environmentally sustainable, and it finds itself under pressure to adopt new and innovative procedures to reverse this negative public perception. Cultivating this oilseed crop outside the rainforest zone is only possible using artificial irrigation. Close to 30% of the world's irrigated agricultural lands also face problems due to salinity stress. Consequently, the research community must consider drought and salinity together when studying to empower breeding programs in order to develop superior genotypes adapted to those potential new areas for oil palm cultivation. Multi-Omics Integration (MOI) offers a new window of opportunity for the non-trivial challenge of unraveling the mechanisms behind multigenic traits, such as drought and salinity tolerance. The current study carried out a comprehensive, large-scale, single-omics analysis (SOA), and MOI study on the leaves of young oil palm plants submitted to very high salinity stress. Taken together, a total of 1239 proteins were positively regulated, and 1660 were negatively regulated in transcriptomics and proteomics analyses. Meanwhile, the metabolomics analysis revealed 37 metabolites that were upregulated and 92 that were downregulated. After performing SOA, 436 differentially expressed (DE) full-length transcripts, 74 DE proteins, and 19 DE metabolites underwent MOI analysis, revealing several pathways affected by this stress, with at least one DE molecule in all three omics platforms used. The Cysteine and methionine metabolism (map00270) and Glycolysis/Gluconeogenesis (map00010) pathways were the most affected ones, each one with 20 DE molecules.
RESUMO
The multipurpose tree Gliricidia sepium (Jacq.) Walp. adapts to a very high level of salt stress (≥20 dS m-1) and resumes the production of new leaves around 2 weeks after losing all leaves due to abrupt salinity stress. The integration of metabolome and transcriptome profiles from gliricidia leaves points to a central role of the phenylpropanoid biosynthesis pathway in the short-term response to salinity stress. In this study, a deeper untargeted metabolomics analysis of the leaves and roots of young gliricidia plants was conducted to characterize the mechanism(s) behind this adaptation response. The polar and lipidic fractions from leaf and root samples were extracted and analyzed on a UHPLC.ESI.Q-TOF.HRMS system. Acquired data were analyzed using the XCMS Online, and MetaboAnalyst platforms, via three distinct and complementary strategies. Together, the results obtained first led us to postulate that these plants are salt-excluding plants, which adapted to high salinity stress via two salt-excluding mechanisms, starting in the canopy-severe defoliation-and concluding in the roots-limited entry of Na. Besides that, it was possible to show that the phenylpropanoid biosynthesis pathway plays a role throughout the entire adaptation response, starting in the short term and continuing in the long one. The roots metabolome analysis revealed 11 distinct metabolic pathways affected by salt stress, and the initial analysis of the two most affected ones-steroid biosynthesis and lysine biosynthesis-led us also to postulate that the accumulation of lignin and some phytosterols, as well as lysine biosynthesis-but not degradation, play a role in promoting the adaptation response. However, additional studies are necessary to investigate these hypotheses.
RESUMO
Soil salinity is one abiotic stress that threatens agriculture in more than 100 countries. Gliricidia [Gliricidia sepium (Jacq.) Kunth] is a multipurpose tree known for its ability to adapt to a wide range of soils; however, its tolerance limits and responses to salt stress are not yet well understood. In this study, after characterizing the morphophysiological responses of young gliricidia plants to salinity stress, leaf metabolic and transcription profiles were generated and submitted to single and integrated analyses. RNA from leaf samples were subjected to RNA sequencing using an Illumina HiSeq platform and the paired-end strategy. Polar and lipidic fractions from leaf samples were extracted and analyzed on an ultra-high-performance liquid chromatography (UHPLC) coupled with electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry (MS) system. Acquired data were analyzed using the OmicsBox, XCMS Online, MetaboAnalyst, and Omics Fusion platforms. The substrate salinization protocol used allowed the identification of two distinct responses to salt stress: tolerance and adaptation. Single analysis on transcriptome and metabolome data sets led to a group of 5,672 transcripts and 107 metabolites differentially expressed in gliricidia leaves under salt stress. The phenylpropanoid biosynthesis was the most affected pathway, with 15 metabolites and three genes differentially expressed. Results showed that the differentially expressed metabolites and genes from this pathway affect mainly short-term salt stress (STS). The single analysis of the transcriptome identified 12 genes coding for proteins that might play a role in gliricidia response at both STS and long-term salt stress (LTS). Further studies are needed to reveal the mechanisms behind the adaptation response.
Assuntos
Fabaceae , Transcriptoma , Fabaceae/genética , Metabolômica , Salinidade , Estresse Salino/genética , Tolerância ao Sal/genéticaRESUMO
INTRODUCTION: Oil palm (E. guineensis), the most consumed vegetable oil in the world, is affected by fatal yellowing (FY), a condition that can lead to the plant's death. Although studies have been performed since the 1980s, including investigations of biotic and abiotic factors, FY's cause remains unknown and efforts in researches are still necessary. OBJECTIVES: This work aims to investigate the metabolic expression in plants affected by FY using an untargeted metabolomics approach. METHOD: Metabolic fingerprinting analysis of oil palm leaves was performed using ultra high liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MS). Chemometric analysis, using principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), was applied to data analysis. Metabolites identification was performed by high resolution mass spectrometry (HRMS), MS/MS experiments and comparison with databases and literature. RESULTS: Metabolomics analysis based on MS detected more than 50 metabolites in oil palm leaf samples. PCA and PLS-DS analysis provided group segregation and classification of symptomatic and non-symptomatic FY samples, with a great external validation of the results. Nine differentially expressed metabolites were identified as glycerophosphorylcholine, arginine, asparagine, apigenin 6,8-di-C-hexose, tyramine, chlorophyllide, 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine, proline and malvidin 3-glucoside-5-(6â³-malonylglucoside). Metabolic pathways and biological importance of those metabolites were assigned. CONCLUSION: Nine metabolites were detected in a higher concentration in non-symptomatic FY plants. Seven are related to stress factors i.e. plant defense and nutrient absorption, which can be affected by the metabolic depression of these compounds. Two of those metabolites (glycerophosphorylcholine and 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine) are presented as potential biomarkers, since they have no known direct relation to plant stress.
Assuntos
Arecaceae/metabolismo , Metabolômica , Óleo de Palmeira/metabolismo , Doenças das Plantas , Arecaceae/química , Cromatografia Líquida de Alta Pressão , Análise dos Mínimos Quadrados , Óleo de Palmeira/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Análise de Componente Principal , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
BACKGROUND: Photosynthesis can be roughly separated into biochemical and photochemical processes. Both are affected by drought and can be assessed by non-invasive standard methods. Gas exchange, which mainly assesses the first process, has well-defined protocols. It is considered a standard method for evaluation of plant responses to drought. Under such stress, assessment of photochemical apparatus by chlorophyll fluorescence needs improvement to become faster and reproducible, especially in growing plants under field conditions. For this, we developed a protocol based on chlorophyll fluorescence imaging, using a rapid light curve approach. RESULTS: Almost all parameters obtained by rapid light curves have shown statistical differences between control and drought stressed maize plants. However, most of them were affected by induction processes, relaxation rate, and/or differences in chlorophyll content; while they all were influenced by actinic light intensity on each light step of light curve. Only the normalized parameters related to photochemical and non-photochemical quenching were strongly correlated with data obtained by gas exchange, but only from the light step in which the linear electron flow reached saturation. CONCLUSIONS: The procedure developed in this study for discrimination of plant responses to water deficit stress proved to be as fast, efficient and reliable as the standard technique of gas exchange in order to discriminate the responses of maize genotypes to drought. However, unlike that, there is no need to perform daily and time consuming calibration routines. Moreover, plant acclimation to the dark is not required. The protocol can be applied to plants growing in both controlled conditions and full sunlight in the field. In addition, it generates parameters in a fast and accurate measurement process, which enables evaluating several plants in a short period of time.