Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13447, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862628

RESUMO

Aedes aegypti is vector of many arboviruses including Zika, dengue, yellow fever, West Nile, and Chikungunya. Its control efforts are hampered by widespread insecticide resistance reported in the Americas and Asia, while data from Africa is more limited. Here we use publicly available 729 Ae. aegypti whole-genome sequencing samples from 15 countries, including nine in Africa, to investigate the genetic diversity in four insecticide resistance linked genes: ace-1, GSTe2, rdl and vgsc. Apart from vgsc, the other genes have been less investigated in Ae. aegypti, and almost no genetic diversity information is available. Among the four genes, we identified 1,829 genetic variants including 474 non-synonymous substitutions, some of which have been previously documented, as well as putative copy number variations in GSTe2 and vgsc. Global insecticide resistance phenotypic data demonstrated variable resistance in geographic areas with resistant genotypes. Overall, our work provides the first global catalogue and geographic distribution of known and new amino-acid mutations and duplications that can be used to guide the identification of resistance drivers in Ae. aegypti and thereby support monitoring efforts and strategies for vector control.


Assuntos
Aedes , Variação Genética , Resistência a Inseticidas , Resistência a Inseticidas/genética , Animais , Aedes/genética , Aedes/efeitos dos fármacos , Genômica/métodos , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Proteínas de Insetos/genética , Sequenciamento Completo do Genoma/métodos , Variações do Número de Cópias de DNA
2.
J Antimicrob Chemother ; 79(7): 1529-1539, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38751093

RESUMO

OBJECTIVES: Comprehensive data on the genomic epidemiology of hospital-associated Klebsiella pneumoniae in Ghana are scarce. This study investigated the genomic diversity, antimicrobial resistance patterns, and clonal relationships of 103 clinical K. pneumoniae isolates from five tertiary hospitals in Southern Ghana-predominantly from paediatric patients aged under 5 years (67/103; 65%), with the majority collected from urine (32/103; 31%) and blood (25/103; 24%) cultures. METHODS: We generated hybrid Nanopore-Illumina assemblies and employed Pathogenwatch for genotyping via Kaptive [capsular (K) locus and lipopolysaccharide (O) antigens] and Kleborate (antimicrobial resistance and hypervirulence) and determined clonal relationships using core-genome MLST (cgMLST). RESULTS: Of 44 distinct STs detected, ST133 was the most common, comprising 23% of isolates (n = 23/103). KL116 (28/103; 27%) and O1 (66/103; 64%) were the most prevalent K-locus and O-antigen types. Single-linkage clustering highlighted the global spread of MDR clones such as ST15, ST307, ST17, ST11, ST101 and ST48, with minimal allele differences (1-5) from publicly available genomes worldwide. Conversely, 17 isolates constituted novel clonal groups and lacked close relatives among publicly available genomes, displaying unique genetic diversity within our study population. A significant proportion of isolates (88/103; 85%) carried resistance genes for ≥3 antibiotic classes, with the blaCTX-M-15 gene present in 78% (n = 80/103). Carbapenem resistance, predominantly due to blaOXA-181 and blaNDM-1 genes, was found in 10% (n = 10/103) of the isolates. CONCLUSIONS: Our findings reveal a complex genomic landscape of K. pneumoniae in Southern Ghana, underscoring the critical need for ongoing genomic surveillance to manage the substantial burden of antimicrobial resistance.


Assuntos
Antibacterianos , Variação Genética , Infecções por Klebsiella , Klebsiella pneumoniae , Tipagem de Sequências Multilocus , Centros de Atenção Terciária , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Centros de Atenção Terciária/estatística & dados numéricos , Gana/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Pré-Escolar , Lactente , Testes de Sensibilidade Microbiana , Genótipo , Feminino , Masculino , Criança , Farmacorresistência Bacteriana Múltipla/genética , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Genoma Bacteriano , Farmacorresistência Bacteriana/genética , Adulto , Epidemiologia Molecular
3.
Parasit Vectors ; 16(1): 265, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543604

RESUMO

Flaviviruses are a diverse group of RNA viruses, which include the etiological agents of Zika, dengue and yellow fever that are transmitted by mosquitoes. Flaviviruses do not encode reverse transcriptase and cannot reverse transcribe into DNA, yet DNA sequences of flaviviruses are found both integrated in the chromosomes of Aedes aegypti mosquitoes and as extrachromosomal sequences. We have previously examined the Ae. aegypti reference genome to identify flavivirus integrations and analyzed conservation of these sequences among whole-genome data of 464 Ae. aegypti collected across 10 countries globally. Here, we extended this analysis by identifying flavivirus sequences in these samples independently of the Ae. aegypti reference assembly. Our aim was to identify the complete set of viral sequences, including those absent in the reference genome, and their geographical distribution. We compared the identified sequences using BLASTn and applied machine learning methods to identify clusters of similar sequences. Apart from clusters of sequences that correspond to the four viral integration events that we had previously described, we identified 19 smaller clusters. The only cluster with a strong geographic association consisted of Cell-fusing agent virus-like sequences specific to Thailand. The remaining clusters did not have a geographic association and mostly consisted of near identical short sequences without strong similarity to any known flaviviral genomes. The short read sequencing data did not permit us to determine whether identified sequences were extrachromosomal or integrated into Ae. aegypti chromosomes. Our results suggest that Liverpool strain and field Ae. aegypti mosquitoes have a similar variety of conserved flaviviral DNA, whose functional role should be investigated in follow-up studies.


Assuntos
Aedes , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Flavivirus/genética , Aedes/genética , Zika virus/genética , DNA Viral , Análise de Sequência de DNA , Mosquitos Vetores/genética
4.
Sci Rep ; 13(1): 9522, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308503

RESUMO

Sequence analysis of Plasmodium falciparum parasites is informative in ensuring sustained success of malaria control programmes. Whole-genome sequencing technologies provide insights into the epidemiology and genome-wide variation of P. falciparum populations and can characterise geographical as well as temporal changes. This is particularly important to monitor the emergence and spread of drug resistant P. falciparum parasites which is threatening malaria control programmes world-wide. Here, we provide a detailed characterisation of genome-wide genetic variation and drug resistance profiles in asymptomatic individuals in South-Western Mali, where malaria transmission is intense and seasonal, and case numbers have recently increased. Samples collected from Ouélessébougou, Mali (2019-2020; n = 87) were sequenced and placed in the context of older Malian (2007-2017; n = 876) and African-wide (n = 711) P. falciparum isolates. Our analysis revealed high multiclonality and low relatedness between isolates, in addition to increased frequencies of molecular markers for sulfadoxine-pyrimethamine and lumefantrine resistance, compared to older Malian isolates. Furthermore, 21 genes under selective pressure were identified, including a transmission-blocking vaccine candidate (pfCelTOS) and an erythrocyte invasion locus (pfdblmsp2). Overall, our work provides the most recent assessment of P. falciparum genetic diversity in Mali, a country with the second highest burden of malaria in West Africa, thereby informing malaria control activities.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Mali , Antiparasitários , Variação Genética
5.
Sci Rep ; 13(1): 5612, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019918

RESUMO

Since its first detection in 2012 in Djibouti, Anopheles stephensi has invaded and established in the Horn of Africa, and more recently Nigeria. The expansion of this vector poses a significant threat to malaria control and elimination efforts. Integrated vector management is the primary strategy used to interrupt disease transmission; however, growing insecticide resistance is threatening to reverse gains in global malaria control. We present a next-generation amplicon-sequencing approach, for high-throughput monitoring of insecticide resistance genes (ace1, GSTe2, vgsc and rdl), species identification and characterization of genetic diversity (its2 and cox1) in An. stephensi. Ninety-five An. stephensi mosquitoes, collected in Ethiopia, were screened, identifying 104 SNPs, including the knock-down mutation L958F (L1014F in Musca domestica), and for the first time in this vector species, the A296S substitution (A301S in Drosophila melanogaster) in the rdl locus. Two other amino acid substitutions (ace1-N177D, GSTe2-V189L) were also identified but have not been previously implicated in insecticide resistance. Genetic diversity in the mitochondrial cox1 gene revealed shared haplotypes between Ethiopian An. stephensi with samples from Pakistan, Sudan, and Djibouti. Overall, we present a reliable, cost-effective strategy using amplicon-sequencing to monitor known insecticide resistance mutations, with the potential to identify new genetic variants, to assist in the high-throughput surveillance of insecticide resistance in An. stephensi populations.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Resistência a Inseticidas/genética , Anopheles/genética , Drosophila melanogaster , Mosquitos Vetores/genética , Inseticidas/farmacologia , Etiópia
6.
J Antimicrob Chemother ; 78(5): 1300-1308, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36999363

RESUMO

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) strains are of particular concern, especially strains with mobilizable carbapenemase genes such as blaKPC, blaNDM or blaOXA-48, given that carbapenems are usually the last line drugs in the ß-lactam class and, resistance to this sub-class is associated with increased mortality and frequently co-occurs with resistance to other antimicrobial classes. OBJECTIVES: To characterize the genomic diversity and international dissemination of CRKP strains from tertiary care hospitals in Lisbon, Portugal. METHODS: Twenty CRKP isolates obtained from different patients were subjected to WGS for species confirmation, typing, drug resistance gene detection and phylogenetic reconstruction. Two additional genomic datasets were included for comparative purposes: 26 isolates (ST13, ST17 and ST231) from our collection and 64 internationally available genomic assemblies (ST13). RESULTS: By imposing a 21 SNP cut-off on pairwise comparisons we identified two genomic clusters (GCs): ST13/GC1 (n = 11), all bearing blaKPC-3, and ST17/GC2 (n = 4) harbouring blaOXA-181 and blaCTX-M-15 genes. The inclusion of the additional datasets allowed the expansion of GC1/ST13/KPC-3 to 23 isolates, all exclusively from Portugal, France and the Netherlands. The phylogenetic tree reinforced the importance of the GC1/KPC-3-producing clones along with their rapid emergence and expansion across these countries. The data obtained suggest that the ST13 branch emerged over a decade ago and only more recently did it underpin a stronger pulse of transmission in the studied population. CONCLUSIONS: This study identifies an emerging OXA-181/ST17-producing strain in Portugal and highlights the ongoing international dissemination of a KPC-3/ST13-producing clone from Portugal.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae , Filogenia , Portugal/epidemiologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Carbapenêmicos , Genômica , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Chaperonas Moleculares/genética , Proteínas Supressoras de Tumor/genética
7.
Sci Rep ; 13(1): 2142, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750737

RESUMO

The zoonotic Plasmodium knowlesi parasite is a growing public health concern in Southeast Asia, especially in Malaysia, where elimination of P. falciparum and P. vivax malaria has been the focus of control efforts. Understanding of the genetic diversity of P. knowlesi parasites can provide insights into its evolution, population structure, diagnostics, transmission dynamics, and the emergence of drug resistance. Previous work has revealed that P. knowlesi fall into three main sub-populations distinguished by a combination of geographical location and macaque host (Macaca fascicularis and M. nemestrina). It has been shown that Malaysian Borneo groups display profound heterogeneity with long regions of high or low divergence resulting in mosaic patterns between sub-populations, with some evidence of chromosomal-segment exchanges. However, the genetic structure of non-Borneo sub-populations is less clear. By gathering one of the largest collections of P. knowlesi whole-genome sequencing data, we studied structural genomic changes across sub-populations, with the analysis revealing differences in Borneo clusters linked to mosquito-related stages of the parasite cycle, in contrast to differences in host-related stages for the Peninsular group. Our work identifies new genetic exchange events, including introgressions between Malaysian Peninsular and M. nemestrina-associated clusters on various chromosomes, including in parasite invasion genes (DBP[Formula: see text], NBPX[Formula: see text] and NBPX[Formula: see text]), and important proteins expressed in the vertebrate parasite stages. Recombination events appear to have occurred between the Peninsular and M. fascicularis-associated groups, including in the DBP[Formula: see text] and DBP[Formula: see text] invasion associated genes. Overall, our work finds that genetic exchange events have occurred among the recognised contemporary groups of P. knowlesi parasites during their evolutionary history, leading to apparent mosaicism between these sub-populations. These findings generate new hypotheses relevant to parasite evolutionary biology and P. knowlesi epidemiology, which can inform malaria control approaches to containing the impact of zoonotic malaria on human communities.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Plasmodium knowlesi , Animais , Humanos , Variação Genética , Plasmodium knowlesi/genética , Macaca fascicularis/parasitologia , Malária/parasitologia , Malásia/epidemiologia , Genética Populacional , Seleção Genética
8.
Genome Med ; 15(1): 3, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658655

RESUMO

BACKGROUND: Klebsiella pneumoniae (Kp) Gram-negative bacteria cause nosocomial infections and rapidly acquire antimicrobial resistance (AMR), which makes it a global threat to human health. It also has a comparatively rare hypervirulent phenotype that can lead to severe disease in otherwise healthy individuals. Unlike classic Kp, canonical hypervirulent strains usually have limited AMR. However, after initial case reports in 2015, carbapenem-resistant hypervirulent Kp has increased in prevalence, including in China, but there is limited understanding of its burden  in other geographical regions. METHODS: Here, we examined the largest collection of publicly available sequenced Kp isolates (n=13,178), containing 1603 different sequence types (e.g. ST11 15.0%, ST258 9.5%), and 2174 (16.5%) hypervirulent strains. We analysed the plasmid replicons and carbapenemase and siderophore encoding genes to understand the movement of hypervirulence and AMR genes located on plasmids, and their convergence in carbapenem-resistant hypervirulent Kp. RESULTS: We identified and analysed 3034 unique plasmid replicons to inform the epidemiology and transmission dynamics of carbapenem-resistant hypervirulent Kp (n=1028, 7.8%). We found several outbreaks globally, including one involving ST11 strains in China and another of ST231 in Asia centred on India, Thailand, and Pakistan. There was evidence of global flow of Kp, including across multiple continents. In most cases, clusters of Kp isolates are the result of hypervirulence genes entering classic strains, instead of carbapenem resistance genes entering canonical hypervirulent ones. CONCLUSIONS: Our analysis demonstrates the importance of plasmid analysis in the monitoring of carbapenem-resistant and hypervirulent strains of Kp. With the growing adoption of omics-based technologies for clinical and surveillance applications, including in geographical regions with gaps in data and knowledge (e.g. sub-Saharan Africa), the identification of the spread of AMR will inform infection control globally.


Assuntos
Carbapenêmicos , Infecções por Klebsiella , Humanos , Carbapenêmicos/farmacologia , Klebsiella pneumoniae , Virulência/genética , Plasmídeos/genética , beta-Lactamases/genética , Genômica , Antibacterianos/farmacologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia
9.
PLoS Negl Trop Dis ; 16(12): e0010935, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36512510

RESUMO

Aedes mosquito vectors transmit many viruses of global health concern, including dengue, chikungunya and Zika. These vector-borne viral diseases have a limited number of treatment options, and vaccines vary in their effectiveness. Consequently, integrated vector management is a primary strategy for disease control. However, the increasing emergence and spread of insecticide resistance is threatening the efficacy of vector control methods. Identifying mutations associated with resistance in vector populations is important to monitor the occurrence and evolution of insecticide resistance and inform control strategies. Rapid and cost-effective genome sequencing approaches are urgently needed. Here we present an adaptable targeted amplicon approach for cost-effective implementation within next generation sequencing platforms. This approach can identify single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels) in genes involved in insecticide resistance in Aedes aegypti mosquitoes. We designed and tested eleven amplicons, which included segments of the ace-1 (carbamate target), the Voltage-Gated Sodium Channel (vgsc; pyrethroids, DDT and organochlorines), and rdl (dieldrin) genes; thereby covering established knockdown resistance (kdr) mutations (e.g., S989P, I1011M/V, V1016G/I and F1534C), with the potential to identify novel ones. The amplicon assays were designed with internal barcodes, to facilitate multiplexing of large numbers of mosquitoes at low cost, and were sequenced using an Illumina platform. Our approach was evaluated on 152 Ae. aegypti mosquitoes collected in Cabo Verde, an archipelago with a history of arbovirus outbreaks. The amplicon sequence data revealed 146 SNPs, including four non-synonymous polymorphisms in the vgsc gene, one in ace-1 and the 296S rdl mutation previously associated with resistance to organochlorines. The 296S rdl mutation was identified in 98% of mosquitoes screened, consistent with the past use of an organochlorine compound (e.g., DDT). Overall, our work shows that targeted amplicon sequencing is a rapid, robust, and cost-effective tool that can be used to perform high throughput monitoring of insecticide resistance.


Assuntos
Aedes , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Infecção por Zika virus , Zika virus , Animais , Resistência a Inseticidas/genética , Aedes/genética , DDT , Cabo Verde , Inseticidas/farmacologia , Piretrinas/farmacologia , Mosquitos Vetores/genética , Canais de Sódio Disparados por Voltagem/genética , Mutação
10.
Sci Rep ; 12(1): 13893, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974073

RESUMO

Surveillance of malaria vector species and the monitoring of insecticide resistance are essential to inform malaria control strategies and support the reduction of infections and disease. Genetic barcoding of mosquitoes is a useful tool to assist the high-throughput surveillance of insecticide resistance, discriminate between sibling species and to detect the presence of Plasmodium infections. In this study, we combined multiplex PCR, custom designed dual indexing, and Illumina next generation sequencing for high throughput single nucleotide polymorphism (SNP)-profiling of four species from the Anopheles (An.) gambiae complex (An. gambiae sensu stricto, An. coluzzii, An. arabiensis and An. melas). By amplifying and sequencing only 14 genetic fragments (500 bp each), we were able to simultaneously detect Plasmodium infection; insecticide resistance-conferring SNPs in ace1, gste2, vgsc and rdl genes; the partial sequences of nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and intergenic spacers (IGS), Short INterspersed Elements (SINE), as well as mitochondrial genes (cox1 and nd4) for species identification and genetic diversity. Using this amplicon sequencing approach with the four selected An. gambiae complex species, we identified a total of 15 non-synonymous mutations in the insecticide target genes, including previously described mutations associated with resistance and two new mutations (F1525L in vgsc and D148E in gste2). Overall, we present a reliable and cost-effective high-throughput panel for surveillance of An. gambiae complex mosquitoes in malaria endemic regions.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética
11.
Sci Rep ; 12(1): 13791, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963896

RESUMO

Klebsiella pneumoniae (Kp) bacteria are an increasing threat to public health and represent one of the most concerning pathogens involved in life-threatening infections and antimicrobial resistance (AMR). To understand the epidemiology of AMR of Kp in Portugal, we analysed whole genome sequencing, susceptibility testing and other meta data on 509 isolates collected nationwide from 16 hospitals and environmental settings between years 1980 and 2019. Predominant sequence types (STs) included ST15 (n = 161, 32%), ST147 (n = 36, 7%), ST14 (n = 26, 5%) or ST13 (n = 26, 5%), while 31% of isolates belonged to STs with fewer than 10 isolates. AMR testing revealed widespread resistance to aminoglycosides, fluoroquinolones, cephalosporins and carbapenems. The most common carbapenemase gene was blaKPC-3. Whilst the distribution of AMR linked plasmids appears uncorrelated with ST, their frequency has changed over time. Before year 2010, the dominant plasmid group was associated with the extended spectrum beta-lactamase gene blaCTX-M-15, but this group appears to have been displaced by another carrying the blaKPC-3 gene. Co-carriage of blaCTX-M and blaKPC-3 was uncommon. Our results from the largest genomics study of Kp in Portugal highlight the active transmission of strains with AMR genes and provide a baseline set of variants for future resistance monitoring and epidemiological studies.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica , Hospitais , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Portugal/epidemiologia
12.
Sci Rep ; 12(1): 13671, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953553

RESUMO

The majority of Klebsiella pneumoniae (Kp) infections are nosocomial, but a growing number of community-acquired infections are caused by hypervirulent strains (hvKp) characterised by liver invasion and rapid metastasis. Unlike nosocomial Kp infections, hvKp are generally susceptible to antibiotics. Due to the rapid progression of hvKp infections, timely and accurate diagnosis is required for effective treatment. To identify potential drivers of the hypervirulent phenotype, we performed a genome-wide association study (GWAS) analysis on single nucleotide variants and accessory genome loci across 79 publicly available Kp isolates collected from patients' liver and a diverse global Kp dataset (n = 646). The GWAS analysis revealed 29 putative genes (P < 10-10) associated with higher risk of liver phenotype, including hypervirulence linked salmochelin iro (odds ratio (OR): 29.8) and aerobactin iuc (OR: 14.1) loci. A minority of liver isolates (n = 15, 19%) had neither of these siderophores nor any other shared biomarker, suggesting possible unknown drivers of hypervirulence and an intrinsic ability of Kp to invade the liver. Despite identifying potential novel loci linked to a liver invasive Kp phenotype, our work highlights the need for large-scale studies involving more sequence types to identify further hypervirulence biomarkers to assist clinical decision making.


Assuntos
Infecção Hospitalar , Infecções por Klebsiella , Antibacterianos , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genômica , Humanos , Infecções por Klebsiella/genética , Klebsiella pneumoniae , Virulência/genética , Fatores de Virulência/genética
13.
Int J Antimicrob Agents ; 59(6): 106581, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35378228

RESUMO

The emergence of carbapenemase-producing Klebsiella pneumoniae strains has triggered the use of old antibiotics such as colistin. This is driving the emergence of colistin resistance in multidrug-resistant strains that underlie life-threatening infections. This study analyses the mutational diversity of 22 genes associated with colistin resistance in 140 K. pneumoniae clinical isolates integrated in a high-resolution phylogenetic scenario. Colistin susceptibility was accessed by broth microdilution. A total of 98 isolates were susceptible and 16 were resistant, 10 of which were carbapenemase producers. Across the 22 genes examined, 171 non-synonymous mutations and 9 mutations associated with promoter regions were found. Eighty-five isolates had a truncation and/or deletion in at least one of the 22 genes. However, only seven mutations, the complete deletion of mgrB or insertion sequence (IS)-mediated disruption, were exclusively observed in resistant isolates. Four of these (mgrBIle13fs, pmrBGly207Asp, phoQHis339Asp and ramAIle28Met) comprised novel mutations that are potentially involved in colistin resistance. One strain bore a ISEcp1-blaCTX-M-15::mgrB disruption, underlying co-resistance to third-generation cephalosporins and colistin. Moreover, the high-resolution phylogenetic context shows that most of the mutational diversity spans multiple phylogenetic clades, and most of the mutations previously associated with colistin resistance are clade-associated and present in susceptible isolates, showing no correlation with colistin resistance. In conclusion, the present study provides relevant data on the genetic background of genes involved with colistin resistance deeply rooted across monophyletic groups and provides a better understanding of the genes and mutations involved in colistin resistance.


Assuntos
Colistina , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Mutação , Filogenia , beta-Lactamases/genética
14.
Parasit Vectors ; 14(1): 332, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174947

RESUMO

Mosquitoes of the genus Aedes are the main vectors of many viruses, e.g. dengue and Zika, which affect millions of people each year and for which there are limited treatment options. Understanding how Aedes mosquitoes tolerate high viral loads may lead to better disease control strategies. Elucidating endogenous viral elements (EVEs) within vector genomes may give exploitable biological insights. Previous studies have reported the presence of a large number of EVEs in Aedes genomes. Here we investigated if flavivirus EVEs are conserved across populations and different Aedes species by using ~ 500 whole genome sequence libraries from Aedes aegypti and Aedes albopictus, sourced from colonies and field mosquitoes across continents. We found that nearly all flavivirus EVEs in the Ae. aegypti reference genome originate from four separate putative viral integration events, and that they are highly conserved across geographically diverse samples. By contrast, flavivirus EVEs in the Ae. albopictus reference genome originate from up to nine distinct integration events and show low levels of conservation, even within samples from narrow geographical ranges. Our analysis suggests that flaviviruses integrated as long sequences and were subsequently fragmented and shuffled by transposable elements. Given that EVEs of Ae. aegypti and Ae. albopictus belong to different phylogenetic clades and have very differing levels of conservation, they may have different evolutionary origins and potentially different functional roles.


Assuntos
Aedes/virologia , Flavivirus/fisiologia , Mosquitos Vetores/virologia , Integração Viral , Aedes/classificação , Aedes/genética , Animais , Flavivirus/genética , Genoma de Inseto , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Filogenia
15.
Sci Rep ; 11(1): 6491, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753763

RESUMO

Klebsiella pneumoniae is an important nosocomial infectious agent with a high antimicrobial resistance (AMR) burden. The application of long read sequencing technologies is providing insights into bacterial chromosomal and putative extra-chromosomal genetic elements (PEGEs) associated with AMR, but also epigenetic DNA methylation, which is thought to play a role in cleavage of foreign DNA and expression regulation. Here, we apply the PacBio sequencing platform to eight Portuguese hospital isolates, including one carbapenemase producing isolate, to identify methylation motifs. The resulting assembled chromosomes were between 5.2 and 5.5Mbp in length, and twenty-six PEGEs were found. Four of our eight samples carry blaCTX-M-15, a dominant Extended Spectrum Beta Lactamase in Europe. We identified methylation motifs that control Restriction-Modification systems, including GATC of the DNA adenine methylase (Dam), which methylates N6-methyladenine (m6A) across all our K. pneumoniae assemblies. There was a consistent lack of methylation by Dam of the GATC motif downstream of two genes: fosA, a locus associated with low level fosfomycin resistance, and tnpB transposase on IncFIB(K) plasmids. Overall, we have constructed eight high quality reference genomes of K. pneumoniae, with insights into horizontal gene transfer and methylation m6A motifs.


Assuntos
Metilação de DNA , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Proteínas de Bactérias/genética , Metilases de Modificação do DNA/genética , Epigenoma , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Resistência beta-Lactâmica
16.
Microorganisms ; 8(12)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322205

RESUMO

The evolutionary epidemiology, resistome, virulome and mobilome of thirty-one multidrug resistant Klebsiella pneumoniae clinical isolates from the northern Vila Real region of Portugal were characterized using whole-genome sequencing and bioinformatic analysis. The genomic population structure was dominated by two main sequence types (STs): ST147 (n = 17; 54.8%) and ST15 (n = 6; 19.4%) comprising four distinct genomic clusters. Two main carbapenemase coding genes were detected (blaKPC-3 and blaOXA-48) along with additional extended-spectrum ß-lactamase coding loci (blaCTX-M-15, blaSHV-12, blaSHV-27, and blaSHV-187). Moreover, whole genome sequencing enabled the identification of one Klebsiella variicola KPC-3 producer isolate previously misidentified as K. pneumoniae, which in addition to the blaKPC-3 carbapenemase gene, bore the chromosomal broad spectrum ß-lactamase blaLEN-2 coding gene, oqxAB and fosA resistance loci. The blaKPC-3 genes were located in a Tn4401b transposon (K. variicolan = 1; K. pneumoniaen = 2) and Tn4401d isoform (K. pneumoniaen = 28). Overall, our work describes the first report of a blaKPC-3 producing K. variicola, as well as the detection of this species during infection control measures in surveillance cultures from infected patients. It also highlights the importance of additional control measures to overcome the clonal dissemination of carbapenemase producing clones.

17.
Microb Genom ; 7(6)2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32234124

RESUMO

Klebsiella pneumoniae has emerged as an important nosocomial pathogen, with whole-genome sequencing (WGS) significantly improving our ability to characterize associated outbreaks. Our study sought to perform a genome-wide analysis of multiclonal K. pneumoniae isolates (n=39; 23 patients) producing extended spectrum beta-lactamases and/or carbapenemases sourced between 2011 and 2016 in a Portuguese tertiary-care hospital. All isolates showed resistance to third-generation cephalosporins and six isolates (five patients) were also carbapenem resistant. Genome-wide-based phylogenetic analysis revealed a topology representing ongoing dissemination of three main sequence-type (ST) clades (ST15, ST147 and ST307) and transmission across different wards, compatible with missing links that can take the form of undetected colonized patients. Two carbapenemase-coding genes were detected: blaKPC-3, located on a Tn4401d transposon, and blaGES-5 on a novel class 3 integron. Additionally, four genes coding for ESBLs (blaBEL-1, blaCTX-M-8, blaCTX-M-15 and blaCTX-M-32) were also detected. ESBL horizontal dissemination across five clades is highlighted by the similar genetic environments of blaCTX-M-15 gene upstream of ISEcp1 on a Tn3-like transposon. Overall, this study provides a high-resolution genome-wide perspective on the epidemiology of ESBL and carbapenemase-producing K. pneumoniae in a healthcare setting while contributing for the adoption of appropriate intervention and prevention strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...