RESUMO
Previously, colorectal cancer (CRC) has been classified into four distinct molecular subtypes based on transcriptome data. These consensus molecular subtypes (CMSs) have implications for our understanding of tumor heterogeneity and the prognosis of patients. So far, this classification has been based on the use of messenger RNAs (mRNAs), although microRNAs (miRNAs) have also been shown to play a role in tumor heterogeneity and biological differences between CMSs. In contrast to mRNAs, miRNAs have a smaller size and increased stability, facilitating their detection. Therefore, we built a miRNA-based CMS classifier by converting the existing mRNA-based CMS classification using machine learning (training dataset of n = 271). The performance of this miRNA-assigned CMS classifier (CMS-miRaCl) was evaluated in several datasets, achieving an overall accuracy of ~ 0.72 (0.6329-0.7987) in the largest dataset (n = 158). To gain insight into the biological relevance of CMS-miRaCl, we evaluated the most important features in the classifier. We found that miRNAs previously reported to be relevant in microsatellite-instable CRCs or Wnt signaling were important features for CMS-miRaCl. Following further studies to validate its robustness, this miRNA-based alternative might simplify the implementation of CMS classification in clinical workflows.
Assuntos
Neoplasias Colorretais , MicroRNAs , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Instabilidade de Microssatélites , RNA Mensageiro/genética , TranscriptomaRESUMO
Hyaline fibromatosis syndrome (HFS), resulting from ANTXR2 mutations, is an ultra-rare disease that causes intestinal lymphangiectasia and protein-losing enteropathy (PLE). The mechanisms leading to the gastrointestinal phenotype in these patients are not well defined. We present two patients with congenital diarrhea, severe PLE and unique clinical features resulting from deleterious ANTXR2 mutations. Intestinal organoids were generated from one of the patients, along with CRISPR-Cas9 ANTXR2 knockout, and compared with organoids from two healthy controls. The ANTXR2-deficient organoids displayed normal growth and polarity, compared to controls. Using an anthrax-toxin assay we showed that the c.155C>T mutation causes loss-of-function of ANTXR2 protein. An intrinsic defect of monolayer formation in patient-derived or ANTXR2KO organoids was not apparent, suggesting normal epithelial function. However, electron microscopy and second harmonic generation imaging showed abnormal collagen deposition in duodenal samples of these patients. Specifically, collagen VI, which is known to bind ANTXR2, was highly expressed in the duodenum of these patients. In conclusion, despite resistance to anthrax-toxin, epithelial cell function, and specifically monolayer formation, is intact in patients with HFS. Nevertheless, loss of ANTXR2-mediated signaling leads to collagen VI accumulation in the duodenum and abnormal extracellular matrix composition, which likely plays a role in development of PLE.