Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Matrix Biol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851302

RESUMO

Germ cell tumors (GCT) are the most common solid tumors in young men of age 15 - 40. In previous studies, we profiled the interaction of GCT cells with cells of the tumor microenvironment (TM). Earlier studies showed that especially the 3D interaction of fibroblasts (FB) or macrophages with GCT cells influenced the growth behavior and cisplatin response as well as the transcriptome and secretome of the tumor cells, suggesting that the crosstalk of these cells with GCT cells is crucial for tumor progression and therapy outcome. In this study, we shed light on the mechanisms of activation of cancer-associated fibroblasts (CAF) in the GCT setting and their effects on GCT cells lines and the monocyte cell line THP-1. Ex vivo cultures of GCT-derived CAF were established and characterized molecularly and epigenetically by performing DNA methylation arrays, RNA sequencing, and mass spectrometry-based secretome analysis. We demonstrated that the activation state of CAF is influenced by their former prevailing tumor environment in which they have resided. Hereby, we postulated that seminoma (SE) and embryonal carcinoma (EC) activate CAF, while teratoma (TER) play only a minor role in CAF formation. In turn, CAF influence proliferation and the expression of cisplatin sensitivity-related factors in GCT cells lines as well as polarization of in vitro-induced macrophages by the identified effector molecules IGFBP1, LGALS3BP, LYVE1, and PTX3. Our data suggests that the vital interaction of CAF with GCT cells and with macrophages has a huge influence for shaping the extracellular matrix as well as for recruitment of immune cells to the tumor microenvironment. In conclusion, therapeutically interfering with CAF and / or macrophages in addition to the standard therapy might slow-down progression of GCT and re-shaping of the TM to a tumor-promoting environment. Significance: The interaction of CAF with GCT and macrophages considerably influences the microenvironment. Thus, therapeutically interfering with CAF might slow-down progression of GCT and re-shaping of the microenvironment to a tumor-promoting environment.

2.
Acta Neuropathol ; 147(1): 102, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888758

RESUMO

Myasthenia gravis is a chronic antibody-mediated autoimmune disease disrupting neuromuscular synaptic transmission. Informative biomarkers remain an unmet need to stratify patients with active disease requiring intensified monitoring and therapy; their identification is the primary objective of this study. We applied mass spectrometry-based proteomic serum profiling for biomarker discovery. We studied an exploration and a prospective validation cohort consisting of 114 and 140 anti-acetylcholine receptor antibody (AChR-Ab)-positive myasthenia gravis patients, respectively. For downstream analysis, we applied a machine learning approach. Protein expression levels were confirmed by ELISA and compared to other myasthenic cohorts, in addition to myositis and neuropathy patients. Anti-AChR-Ab levels were determined by a radio receptor assay. Immunohistochemistry and immunofluorescence of intercostal muscle biopsies were employed for validation in addition to interactome studies of inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3). Machine learning identified ITIH3 as potential serum biomarker reflective of disease activity. Serum levels correlated with disease activity scores in the exploration and validation cohort and were confirmed by ELISA. Lack of correlation between anti-AChR-Ab levels and clinical scores underlined the need for biomarkers. In a subgroup analysis, ITIH3 was indicative of treatment responses. Immunostaining of muscle specimens from these patients demonstrated ITIH3 localization at the neuromuscular endplates in myasthenia gravis but not in controls, thus providing a structural equivalent for our serological findings. Immunoprecipitation of ITIH3 and subsequent proteomics lead to identification of its interaction partners playing crucial roles in neuromuscular transmission. This study provides data on ITIH3 as a potential pathophysiological-relevant biomarker of disease activity in myasthenia gravis. Future studies are required to facilitate translation into clinical practice.


Assuntos
Biomarcadores , Miastenia Gravis , Humanos , Miastenia Gravis/sangue , Miastenia Gravis/diagnóstico , Miastenia Gravis/patologia , Miastenia Gravis/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Autoanticorpos/sangue , Receptores Colinérgicos/imunologia , Receptores Colinérgicos/metabolismo , Proteômica/métodos , Estudos de Coortes , Adulto Jovem , Proteínas Secretadas Inibidoras de Proteinases/sangue , Aprendizado de Máquina
3.
Brain Commun ; 6(3): fcae182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894951

RESUMO

Neurodegeneration in the autoimmune disease multiple sclerosis still poses a major therapeutic challenge. Effective drugs that target the inflammation can only partially reduce accumulation of neurological deficits and conversion to progressive disease forms. Diet and the associated gut microbiome are currently being discussed as crucial environmental risk factors that determine disease onset and subsequent progression. In people with multiple sclerosis, supplementation of the short-chain fatty acid propionic acid, as a microbial metabolite derived from the fermentation of a high-fiber diet, has previously been shown to regulate inflammation accompanied by neuroprotective properties. We set out to determine whether the neuroprotective impact of propionic acid is a direct mode of action of short-chain fatty acids on CNS neurons. We analysed neurite recovery in the presence of the short-chain fatty acid propionic acid and butyric acid in a reverse-translational disease-in-a-dish model of human-induced primary neurons differentiated from people with multiple sclerosis-derived induced pluripotent stem cells. We found that recovery of damaged neurites is induced by propionic acid and butyric acid. We could also show that administration of butyric acid is able to enhance propionic acid-associated neurite recovery. Whole-cell proteome analysis of induced primary neurons following recovery in the presence of propionic acid revealed abundant changes of protein groups that are associated with the chromatin assembly, translational, and metabolic processes. We further present evidence that these alterations in the chromatin assembly were associated with inhibition of histone deacetylase class I/II following both propionic acid and butyric acid treatment, mediated by free fatty acid receptor signalling. While neurite recovery in the presence of propionic acid is promoted by activation of the anti-oxidative response, administration of butyric acid increases neuronal ATP synthesis in people with multiple sclerosis-specific induced primary neurons.

4.
Nat Commun ; 15(1): 4083, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744825

RESUMO

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Assuntos
Acetil-CoA Carboxilase , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Sobrevivência Celular , Ácidos Graxos , Glucose , Alvo Mecanístico do Complexo 1 de Rapamicina , Animais , Humanos , Camundongos , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Ácidos Graxos/metabolismo , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , NADP/metabolismo , Estresse Oxidativo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Biossíntese de Proteínas
5.
Cancer Lett ; 585: 216673, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296184

RESUMO

In germ cell tumors (GCT), a growing teratoma during chemotherapy with decreasing tumor markers was defined as 'growing teratoma syndrome' (GTS) by Logothetis et al. in 1982. So far, its pathogenesis and specific treatment options remain elusive. We aimed at updating the GTS definition based on molecular and epigenetic features as well as identifying circulating biomarkers. We selected 50 GTS patients for clinical characterization and subsequently 12 samples were molecularly analyzed. We further included 7 longitudinal samples of 2 GTS patients. Teratomas (TER) showing no features of GTS served as controls. GTS were stratified based on growth rates into a slow (<0.5 cm/month), medium (0.5-1.5) and rapid (>1.5) group. By analyzing DNA methylation, microRNA expression and the secretome, we identified putative epigenetic and secreted biomarkers for the GTS subgroups. We found that proteins enriched in the GTS groups compared to TER were involved in proliferation, DNA replication and the cell cycle, while proteins interacting with the immune system were depleted. Additionally, GTSrapid seem to interact more strongly with the surrounding microenvironment than GTSslow. Expression of pluripotency- and yolk-sac tumor-associated genes in GTS and formation of a yolk-sac tumor or somatic-type malignancy in the longitudinal GTS samples, pointed at an additional occult non-seminomatous component after chemotherapy. Thus, updating the Logothetis GTS definition is necessary, which we propose as follows: The GTS describes a continuously growing teratoma that might harbor occult non-seminomatous components considerably reduced during therapy but outgrowing over time again.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Ovarianas , Teratoma , Feminino , Humanos , Neoplasias Ovarianas/patologia , Neoplasias Embrionárias de Células Germinativas/genética , Teratoma/tratamento farmacológico , Biomarcadores Tumorais/genética , Síndrome , Epigênese Genética , Microambiente Tumoral
6.
J Xenobiot ; 14(1): 135-153, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38249105

RESUMO

The incidence of age-related neurodegenerative diseases is rising globally. However, the temporal sequence of neurodegeneration throughout adult life is poorly understood. To identify the starting points and schedule of neurodegenerative events, serotonergic and dopaminergic neurons were monitored in the model organism C. elegans, which has a life span of 2-3 weeks. Neural morphology was examined from young to old nematodes that were exposed to silica nanoparticles. Young nematodes showed phenotypes such as dendritic beading of serotonergic and dopaminergic neurons that are normally not seen until late life. During aging, neurodegeneration spreads from specifically susceptible ADF and PDE neurons in young C. elegans to other more resilient neurons, such as dopaminergic CEP in middle-aged worms. Investigation of neurodegenerative hallmarks and animal behavior revealed a temporal correlation with the acceleration of neuromuscular defects, such as internal hatch in 2-day-old C. elegans. Transcriptomics and proteomics of young worms exposed to nano silica showed a change in gene expression concerning the gene ontology groups serotonergic and dopaminergic signaling as well as neuropeptide signaling. Consistent with this, reporter strains for nlp-3, nlp-14 and nlp-21 confirmed premature degeneration of the serotonergic neuron HSN and other neurons in young C. elegans. The results identify young nematodes as a vulnerable age group for nano silica-induced neural defects with a significantly reduced health span. Neurodegeneration of specific neurons impairs signaling by classical neurotransmitters as well as neuropeptides and compromises related neuromuscular behaviors in critical phases of life, such as the reproductive phase.

7.
Cell Death Dis ; 14(12): 799, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057328

RESUMO

HSP90 has emerged as an appealing anti-cancer target. However, HSP90 inhibitors (HSP90i) are characterized by limited clinical utility, primarily due to the resistance acquisition via heat shock response (HSR) induction. Understanding the roles of abundantly expressed cytosolic HSP90 isoforms (α and ß) in sustaining malignant cells' growth and the mechanisms of resistance to HSP90i is crucial for exploiting their clinical potential. Utilizing multi-omics approaches, we identified that ablation of the HSP90ß isoform induces the overexpression of HSP90α and extracellular-secreted HSP90α (eHSP90α). Notably, we found that the absence of HSP90α causes downregulation of PTPRC (or CD45) expression and restricts in vivo growth of BCR-ABL1+ leukemia cells. Subsequently, chronic long-term exposure to the clinically advanced HSP90i PU-H71 (Zelavespib) led to copy number gain and mutation (p.S164F) of the HSP90AA1 gene, and HSP90α overexpression. In contrast, acquired resistance toward other tested HSP90i (Tanespimycin and Coumermycin A1) was attained by MDR1 efflux pump overexpression. Remarkably, combined CDK7 and HSP90 inhibition display synergistic activity against therapy-resistant BCR-ABL1+ patient leukemia cells via blocking pro-survival HSR and HSP90α overexpression, providing a novel strategy to avoid the emergence of resistance against treatment with HSP90i alone.


Assuntos
Antineoplásicos , Proteínas de Choque Térmico HSP90 , Leucemia , Neoplasias , Humanos , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Leucemia/tratamento farmacológico , Leucemia/genética , Mutação , Resistencia a Medicamentos Antineoplásicos
8.
J Neurooncol ; 165(2): 329-342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976029

RESUMO

PURPOSE: Primary brain tumors are a leading cause of cancer-related death in children, and medulloblastoma is the most common malignant pediatric brain tumor. The current molecular characterization of medulloblastoma is mainly based on protein-coding genes, while little is known about the involvement of long non-coding RNAs (lncRNAs). This study aimed to elucidate the role of the lncRNA OTX2-AS1 in medulloblastoma. METHODS: Analyses of DNA copy number alterations, methylation profiles, and gene expression data were used to characterize molecular alterations of OTX2-AS1 in medulloblastoma tissue samples. In vitro analyses of medulloblastoma cell models and orthotopic in vivo experiments were carried out for functional characterization of OTX2-AS1. High-throughput drug screening was employed to identify pharmacological inhibitors, while proteomics and metabolomics analyses were performed to address potential mechanisms of drug action. RESULTS: We detected amplification and consecutive overexpression of OTX2 and OTX2-AS1 in a subset of medulloblastomas. In addition, OTX2-AS1 promoter methylation was linked to OTX2-AS1 expression. OTX2-AS1 knockout reduced medulloblastoma cell viability and cell migration in vitro and prolonged survival in the D283 orthotopic medulloblastoma mouse xenograft model. Pharmacological inhibition of BCL-2 suppressed the growth of OTX2-AS1 overexpressing medulloblastoma cells in vitro. CONCLUSIONS: Our study revealed a pro-tumorigenic role of OTX2-AS1 in medulloblastoma and identified BCL-2 inhibition as a potential therapeutic approach to target OTX2-AS1 overexpressing medulloblastoma cells.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , RNA Longo não Codificante , Animais , Criança , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/patologia , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/genética
9.
Protein Sci ; 32(12): e4818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916607

RESUMO

Guanylate-binding proteins (GBPs) are essential interferon-γ-activated large GTPases that play a crucial role in host defense against intracellular bacteria and parasites. While their protective functions rely on protein polymerization, our understanding of the structural intricacies of these multimerized states remains limited. To bridge this knowledge gap, we present dimer models for human GBP1 (hGBP1) and murine GBP2 and 7 (mGBP2 and mGBP7) using an integrative approach, incorporating the crystal structure of hGBP1's GTPase domain dimer, crosslinking mass spectrometry, small-angle X-ray scattering, protein-protein docking, and molecular dynamics simulations. Our investigation begins by comparing the protein dynamics of hGBP1, mGBP2, and mGBP7. We observe that the M/E domain in all three proteins exhibits significant mobility and hinge motion, with mGBP7 displaying a slightly less pronounced motion but greater flexibility in its GTPase domain. These dynamic distinctions can be attributed to variations in the sequences of mGBP7 and hGBP1/mGBP2, resulting in different dimerization modes. Unlike hGBP1 and its close ortholog mGBP2, which exclusively dimerize through their GTPase domains, we find that mGBP7 exhibits three equally probable alternative dimer structures. The GTPase domain of mGBP7 is only partially involved in its dimerization, primarily due to an accumulation of negative charge, allowing mGBP7 to dimerize independently of GTP. Instead, mGBP7 exhibits a strong tendency to dimerize in an antiparallel arrangement across its stalks. The results of this work go beyond the sequence-structure-function relationship, as the sequence differences in mGBP7 and mGBP2/hGBP1 do not lead to different structures, but to different protein dynamics and dimerization. The distinct GBP dimer structures are expected to encode specific functions crucial for disrupting pathogen membranes.


Assuntos
Proteínas de Transporte , Proteínas de Ligação ao GTP , Animais , Camundongos , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Ligação ao GTP/química , GTP Fosfo-Hidrolases/metabolismo , Ligação Proteica , Dimerização
10.
Front Plant Sci ; 14: 1182105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868318

RESUMO

In this work, we studied castor-oil plant Ricinus communis as a classical system for endosperm reserve breakdown. The seeds of castor beans consist of a centrally located embryo with the two thin cotyledons surrounded by the endosperm. The endosperm functions as major storage tissue and is packed with nutritional reserves, such as oil, proteins, and starch. Upon germination, mobilization of the storage reserves requires inter-organellar interplay of plastids, mitochondria, and peroxisomes to optimize growth for the developing seedling. To understand their metabolic interactions, we performed a large-scale organellar proteomic study on castor bean endosperm. Organelles from endosperm of etiolated seedlings were isolated and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Computer-assisted deconvolution algorithms were applied to reliably assign the identified proteins to their correct subcellular localization and to determine the abundance of the different organelles in the heterogeneous protein samples. The data obtained were used to build a comprehensive metabolic model for plastids, mitochondria, and peroxisomes during storage reserve mobilization in castor bean endosperm.

11.
Cell Commun Signal ; 21(1): 275, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798768

RESUMO

BACKGROUND: The bacterial secondary metabolite prodigiosin has been shown to exert anticancer, antimalarial, antibacterial and immunomodulatory properties. With regard to cancer, it has been reported to affect cancer cells but not non-malignant cells, rendering prodigiosin a promising lead compound for anticancer drug discovery. However, a direct protein target has not yet been experimentally identified. METHODS: We used mass spectrometry-based thermal proteome profiling in order to identify target proteins of prodigiosin. For target validation, we employed a genetic knockout approach and electron microscopy. RESULTS: We identified the Golgi stacking protein GRASP55 as target protein of prodigiosin. We show that prodigiosin treatment severely affects Golgi morphology and functionality, and that prodigiosin-dependent cytotoxicity is partially reduced in GRASP55 knockout cells. We also found that prodigiosin treatment results in decreased cathepsin activity and overall blocks autophagic flux, whereas co-localization of the autophagosomal marker LC3 and the lysosomal marker LAMP1 is clearly promoted. Finally, we observed that autophagosomes accumulate at GRASP55-positive structures, pointing towards an involvement of an altered Golgi function in the autophagy-inhibitory effect of this natural compound. CONCLUSION: Taken together, we propose that prodigiosin affects autophagy and Golgi apparatus integrity in an interlinked mode of action involving the regulation of organelle alkalization and the Golgi stacking protein GRASP55. Video Abstract.


Assuntos
Complexo de Golgi , Prodigiosina , Humanos , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Autofagossomos/metabolismo , Autofagia
12.
Br J Cancer ; 129(10): 1580-1589, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726478

RESUMO

BACKGROUND: Germ cell tumors (GCT) might undergo transformation into a somatic-type malignancy (STM), resulting in a cell fate switch to tumors usually found in somatic tissues, such as rhabdomyosarcomas or adenocarcinomas. STM is associated with a poor prognosis, but the molecular and epigenetic mechanisms triggering STM are still enigmatic, the tissue-of-origin is under debate and biomarkers are lacking. METHODS: To address these questions, we characterized a unique cohort of STM tissues on mutational, epigenetic and protein level using modern and high-throughput methods like TSO assays, 850k DNA methylation arrays and mass spectrometry. RESULTS AND CONCLUSIONS: For the first time, we show that based on DNA methylation and proteome data carcinoma-related STM more closely resemble yolk-sac tumors, while sarcoma-related STM resemble teratoma. STM harbor mutations in FGF signaling factors (FGF6/23, FGFR1/4) highlighting the corresponding pathway as a therapeutic target. Furthermore, STM utilize signaling pathways, like AKT, FGF, MAPK, and WNT to mediate molecular functions coping with oxidative stress, toxin transport, DNA helicase activity, apoptosis and the cell cycle. Collectively, these data might explain the high therapy resistance of STM. Finally, we identified putative novel biomarkers secreted by STM, like EFEMP1, MIF, and DNA methylation at specific CpG dinucleotides.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Teratoma , Humanos , Metilação de DNA , Proteoma/genética , Proteoma/metabolismo , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/genética , Teratoma/genética , Teratoma/metabolismo , Teratoma/patologia , Biomarcadores/metabolismo , Proteínas da Matriz Extracelular/genética
13.
Acta Neuropathol ; 146(4): 551-564, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37656187

RESUMO

Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis (GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve risk stratification of this single pathway driven tumor type.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Criança , Humanos , Multiômica , Proteômica , Astrocitoma/genética , Neoplasias Encefálicas/genética , Potenciais de Ação
14.
PLoS One ; 18(8): e0288138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603556

RESUMO

The primary function of virus proteases is the proteolytic processing of the viral polyprotein. These enzymes can also cleave host cell proteins, which is important for viral pathogenicity, modulation of cellular processes, viral replication, the defeat of antiviral responses and modulation of the immune response. It is known that COVID-19 can influence multiple tissues or organs and that infection can damage the functionality of the brain in multiple ways. After COVID-19 infections, amyloid-ß, neurogranin, tau and phosphorylated tau were detected extracellularly, implicating possible neurodegenerative processes. The present study describes the possible induction of tau aggregation by the SARS-CoV-2 3CL protease (3CLpro) possibly relevant in neuropathology. Further investigations demonstrated that tau was proteolytically cleaved by the viral protease 3CL and, consequently, generated aggregates. However, more evidence is needed to confirm that COVID-19 is able to trigger neurodegenerative diseases.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Agregados Proteicos , Proteínas tau , Humanos , Proteases 3C de Coronavírus/metabolismo , Endopeptidases , Peptídeo Hidrolases , SARS-CoV-2 , Proteínas tau/metabolismo
15.
Hepatol Commun ; 7(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486964

RESUMO

BACKGROUND: Macrophages play an important role in maintaining liver homeostasis and regeneration. However, it is not clear to what extent the different macrophage populations of the liver differ in terms of their activation state and which other liver cell populations may play a role in regulating the same. METHODS: Reverse transcription PCR, flow cytometry, transcriptome, proteome, secretome, single cell analysis, and immunohistochemical methods were used to study changes in gene expression as well as the activation state of macrophages in vitro and in vivo under homeostatic conditions and after partial hepatectomy. RESULTS: We show that F4/80+/CD11bhi/CD14hi macrophages of the liver are recruited in a C-C motif chemokine receptor (CCR2)-dependent manner and exhibit an activation state that differs substantially from that of the other liver macrophage populations, which can be distinguished on the basis of CD11b and CD14 expressions. Thereby, primary hepatocytes are capable of creating an environment in vitro that elicits the same specific activation state in bone marrow-derived macrophages as observed in F4/80+/CD11bhi/CD14hi liver macrophages in vivo. Subsequent analyses, including studies in mice with a myeloid cell-specific deletion of the TGF-ß type II receptor, suggest that the availability of activated TGF-ß and its downregulation by a hepatocyte-conditioned milieu are critical. Reduction of TGF-ßRII-mediated signal transduction in myeloid cells leads to upregulation of IL-6, IL-10, and SIGLEC1 expression, a hallmark of the activation state of F4/80+/CD11bhi/CD14hi macrophages, and enhances liver regeneration. CONCLUSIONS: The availability of activated TGF-ß determines the activation state of specific macrophage populations in the liver, and the observed rapid transient activation of TGF-ß may represent an important regulatory mechanism in the early phase of liver regeneration in this context.


Assuntos
Regeneração Hepática , Fator de Crescimento Transformador beta , Animais , Camundongos , Expressão Gênica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
16.
PLoS One ; 18(6): e0286756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37279200

RESUMO

Impairments of mitochondrial functions are linked to human ageing and pathologies such as cancer, cardiomyopathy, neurodegeneration and diabetes. Specifically, aberrations in ultrastructure of mitochondrial inner membrane (IM) and factors regulating them are linked to diabetes. The development of diabetes is connected to the 'Mitochondrial Contact Site and Cristae Organising System' (MICOS) complex which is a large membrane protein complex defining the IM architecture. MIC26 and MIC27 are homologous apolipoproteins of the MICOS complex. MIC26 has been reported as a 22 kDa mitochondrial and a 55 kDa glycosylated and secreted protein. The molecular and functional relationship between these MIC26 isoforms has not been investigated. In order to understand their molecular roles, we depleted MIC26 using siRNA and further generated MIC26 and MIC27 knockouts (KOs) in four different human cell lines. In these KOs, we used four anti-MIC26 antibodies and consistently detected the loss of mitochondrial MIC26 (22 kDa) and MIC27 (30 kDa) but not the loss of intracellular or secreted 55 kDa protein. Thus, the protein assigned earlier as 55 kDa MIC26 is nonspecific. We further excluded the presence of a glycosylated, high-molecular weight MIC27 protein. Next, we probed GFP- and myc-tagged variants of MIC26 with antibodies against GFP and myc respectively. Again, only the mitochondrial versions of these tagged proteins were detected but not the corresponding high-molecular weight MIC26, suggesting that MIC26 is indeed not post-translationally modified. Mutagenesis of predicted glycosylation sites in MIC26 also did not affect the detection of the 55 kDa protein band. Mass spectrometry of a band excised from an SDS gel around 55 kDa could not confirm the presence of any peptides derived from MIC26. Taken together, we conclude that both MIC26 and MIC27 are exclusively localized in mitochondria and that the observed phenotypes reported previously are exclusively due to their mitochondrial function.


Assuntos
Diabetes Mellitus , Proteínas de Membrana , Humanos , Glicosilação , Proteínas de Membrana/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Apolipoproteínas/metabolismo , Diabetes Mellitus/patologia
17.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37227781

RESUMO

Therapeutic strategies targeting complement have revolutionized the treatment of myasthenia gravis (MG). However, a deeper understanding of complement modulation in the human system is required to improve treatment responses and identify off-target effects shaping long-term outcomes. For this reason, we studied a cohort of patients with MG treated with either eculizumab or azathioprine as well as treatment-naive patients using a combined proteomics and metabolomics approach. This strategy validated known effects of eculizumab on the terminal complement cascade. Beyond that, eculizumab modulated the serum proteometabolome as distinct pathways were altered in eculizumab-treated patients, including the oxidative stress response, mitogen-activated protein kinase signaling, and lipid metabolism with particular emphasis on arachidonic acid signaling. We detected reduced levels of arachidonate 5-lipoxygenase (ALOX5) and leukotriene A4 in eculizumab-treated patients. Mechanistically, ligation of the C5a receptor (C5aR) is needed for ALOX5 metabolism and generation of downstream leukotrienes. As eculizumab prevents cleavage of C5 into C5a, decreased engagement of C5aR may inhibit ALOX5-mediated synthesis of pro-inflammatory leukotrienes. These findings indicate distinct off-target effects induced by eculizumab, illuminating potential mechanisms of action that may be harnessed to improve treatment outcomes.


Assuntos
Complemento C5 , Miastenia Gravis , Humanos , Proteínas do Sistema Complemento , Ativação do Complemento , Miastenia Gravis/tratamento farmacológico , Receptor da Anafilatoxina C5a , Leucotrienos
18.
Curr Biol ; 33(13): 2690-2701.e5, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37201521

RESUMO

The stability of endosymbiotic associations between eukaryotes and bacteria depends on a reliable mechanism ensuring vertical inheritance of the latter. Here, we demonstrate that a host-encoded protein, located at the interface between the endoplasmic reticulum of the trypanosomatid Novymonas esmeraldas and its endosymbiotic bacterium Ca. Pandoraea novymonadis, regulates such a process. This protein, named TMP18e, is a product of duplication and neo-functionalization of the ubiquitous transmembrane protein 18 (TMEM18). Its expression level is increased at the proliferative stage of the host life cycle correlating with the confinement of bacteria to the nuclear vicinity. This is important for the proper segregation of bacteria into the daughter host cells as evidenced from the TMP18e ablation, which disrupts the nucleus-endosymbiont association and leads to greater variability of bacterial cell numbers, including an elevated proportion of aposymbiotic cells. Thus, we conclude that TMP18e is necessary for the reliable vertical inheritance of endosymbionts.


Assuntos
Trypanosomatina , Trypanosomatina/microbiologia , Bactérias , Simbiose/fisiologia , Eucariotos
19.
FEBS J ; 290(20): 4864-4876, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37254618

RESUMO

Alternative therapeutic options targeting urologic malignancies, such as germ cell tumours, as well as urothelial, renal and prostate carcinomas, are still urgently needed. The membrane protein CD24 represents a promising immunotherapeutical approach. The present study aimed to decipher the molecular function of CD24 in vitro and evaluate the cytotoxic capacity of a third-generation natural killer (NK) cell chimeric antigen receptor (CAR) against CD24 in urologic tumour cell lines. Up to 20 urologic tumour cell lines and several non-malignant control cells were included. XTT viability assays and annexin V/propidium iodide flow cytometry analyses were performed to measure cell viability and apoptosis rates, respectively. Co-immunoprecipitation followed by mass spectrometry analyses identified direct interaction partners of CD24. Luciferase reporter assays were used to functionally validate transactivation of CD24 expression by SOX2. N- and O-glycosylation of CD24 were evaluated by enzymatic digestion and mass spectrometry. The study demonstrates that SOX2 transactivates CD24 expression in embryonal carcinoma cells. In cells of different urological origins, CD24 interacted with proteins involved in cell adhesion, ATP binding, phosphoprotein binding and post-translational modifications, such as histone acetylation and ubiquitination. Treatment of urological tumour cells with NK-CD24-CAR cells resulted in a decreased cell viability and apoptosis induction specifically in CD24+ tumour cells. Limitations of the study include the in vitro setting, which still has to be confirmed in vivo. In conclusion, we show that CD24 is a promising novel target for immune therapeutic approaches targeting urologic malignancies.


Assuntos
Receptores de Antígenos Quiméricos , Neoplasias Urogenitais , Humanos , Masculino , Antígeno CD24/genética , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Imunoterapia/métodos , Células Matadoras Naturais , Próstata , Receptores de Células Matadoras Naturais/metabolismo , Testículo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias Urológicas/metabolismo , Neoplasias Urogenitais/imunologia , Neoplasias Urogenitais/terapia
20.
Artigo em Inglês | MEDLINE | ID: mdl-37054907

RESUMO

Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.


Assuntos
Ferro , Pseudomonas aeruginosa , Ferro/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Fosfolipídeos/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...