RESUMO
When cultivating on wheat bran or deactivated fungal mycelium as a model of "natural growth", the ability of Trichoderma to synthesize extracellular L-lysine-α-oxidase (LysO) simultaneously with cell-wall-degrading enzymes (proteases, xylanase, glucanases, chitinases, etc.), responsible for mycoparasitism, was shown. LysO, in turn, causes the formation of H2O2 and pipecolic acid. These compounds are known to be signaling molecules and play an important role in the induction and development of systemic acquired resistance in plants. Antagonistic effects of LysO have been demonstrated against phytopathogenic fungi and Gram-positive or Gram-negative bacteria with dose-dependent cell death. The antimicrobial effect of LysO decreased in the presence of catalase. The generating intracellular ROS in the presence of LysO was also shown in both bacteria and fungi, which led to a decrease in viable cells. These results suggest that the antimicrobial activity of LysO is due to two factors: the formation of exogenous hydrogen peroxide as a product of the enzymatic oxidative deamination of L-lysine and the direct interaction of LysO with the cell wall of the micro-organisms. Thus, LysO on its own enhances the potential of the producer in the environment; namely, the enzyme complements the strategy of the fungus in biocontrol and indirectly participates in inducing SAR and regulating the relationship between pathogens and plants.
RESUMO
The structural and electro-thermophysical characteristics of organosilicon elastomers modified with multilayer carbon nanotubes (MWCNTs) synthesized on Co-Mo/Al2O3-MgO and metallic (Cu or Ni) microparticles have been studied. The structures were analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The main focus of this study was the influence of metallic dispersed fillers on the resistance of a modified elastomer with Cu and Ni to the degradation of electrophysical parameters under the action of applied electrical voltage. The distribution of the temperature field on the surface of a modified polymer composite with metallic micro-dimensional structures has been recorded. The collected data demonstrate the possibility of controlling the degradation caused by electrical voltage. It has been found that repeated on/off turns of the elastomer with an MWCNTs on 50 and 100 cycles leads to a deterioration in the properties of the conductive elastomer from the available power of 1.1 kW/m2 (-40 °C) and, as a consequence, a decrease in the power to 0.3 kW/m2 (-40 °C) after 100 on/off cycles. At the same time, the Ni additive allows increasing the power by 1.4 kW/m2 (-40 °C) and reducing the intensity of the degradation of the conductive structures (after 100 on/off cycles up to 1.2 kW/m2 (-40 °C). When Ni is replaced by Cu, the power of the modified composite in the heating mode increases to 1.6 kW/m2 (-40 °C) and, at the same time, the degradation of the conductive structures in the composite decreases in the mode of cyclic offensives (50 and 100 cycles) (1.5 kW/m2 (-40 °C)). It was found that the best result in terms of heat removal is typical for an elastomer sample with an MWCNTs and Cu (temperature reaches 93.9 °C), which indicates an intensification of the heat removal from the most overheated places of the composite structure. At the same time, the maximum temperature for the Ni additives reaches 86.7 °C. A sample without the addition of a micro-sized metal is characterized by the local unevenness of the temperature field distribution, which causes undesirable internal overheating and destruction of the current-conducting structures based on the MWCNTs. The maximum temperature at the same time reaches a value of 49.8 °C. The conducted studies of the distribution of the micro-sizes of Ni and Cu show that Cu, due to its larger particles, improves internal heat exchange and intensifies heat release to the surface of the heater sample, which improves the temperature regime of the MWCNTs and, accordingly, increases resistance to electrophysical degradation.
RESUMO
Assaying changes in the amount of DNA in single cells is a well-established method for studying the effects of various perturbations on the cell cycle. A drawback of this method is the need for a fixation procedure that does not allow for in vivo study nor simultaneous monitoring of additional parameters such as fluorescence of tagged proteins or genetically encoded indicators. In this work, we report on a method of Histone Abundance Quantification (HAQ) of live yeast harboring a GFP-tagged histone, Htb2. We show that it provides data highly congruent with DNA levels, both in Saccharomyces cerevisiae and Ogataea polymorpha yeasts. The protocol for the DNA content assay was also optimized to be suitable for both Ogataea and Saccharomyces yeasts. Using the HAQ approach, we demonstrate the expected effects on the cell cycle progression for several compounds and conditions and show usability in conjunction with additional fluorophores. Thus, our data provide a simple approach that can be utilized in a wide range of studies where the effects of various stimuli on the cell cycle need to be monitored directly in living cells.
RESUMO
Metal-organic frameworks (MOFs) are a very promising platform for applications in various industries. In recent years, a variety of methods have been developed for the preparation and modification of MOFs, providing a wide range of materials for different applications in life science. Despite the wide range of different MOFs in terms of properties/sizes/chemical nature, they have not found wide application in biomedical practices at present. In this review, we look at the main methods for the preparation of MOFs that can ensure biomedical applications. In addition, we also review the available options for tuning the key parameters, such as size, morphology, and porosity, which are crucial for the use of MOFs in biomedical systems. This review also analyses possible applications for MOFs of different natures. Their high porosity allows the use of MOFs as universal carriers for different therapeutic molecules in the human body. The wide range of chemical species involved in the synthesis of MOFs makes it possible to enhance targeting and prolongation, as well as to create delivery systems that are sensitive to various factors. In addition, we also highlight how injectable, oral, and even ocular delivery systems based on MOFs can be used. The possibility of using MOFs as therapeutic agents and sensitizers in photodynamic, photothermal, and sonodynamic therapy was also reviewed. MOFs have demonstrated high selectivity in various diagnostic systems, making them promising for future applications. The present review aims to systematize the main ways of modifying MOFs, as well as the biomedical applications of various systems based on MOFs.
Assuntos
Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/uso terapêutico , Estruturas Metalorgânicas/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , PorosidadeRESUMO
The development of reliable and effective functional materials that can be used in various technological fields and environmental conditions is one of the goals of modern nanotechnology. Heating elements' manufacturing requires understanding the laws of heat transfer under conditions of different supply voltages, as this expands the possibilities of such materials' application. Elastomers based on silicon-organic compounds and polyurethane modified with multi-walled carbon nanotubes (MWCNTs) were studied at various concentrations of Ni/MgO or Co-Mo/MgO and voltages (220, 250, and 300 V). It was found that an increase in voltage from 220 to 300 V leads to an initial increase in specific power on one-third followed by a subsequent decrease in a specific power when switched on again to 220 V (for -40 °C) of up to ~44%. In turn, for a polyurethane matrix, an increase in voltage to 300 V leads to an initial peak power value of ~15% and a decrease in power when switched on again by 220 V (for -40 °C) to ~36% (Ni/MgO -MWCNT). The conducted studies have shown that the use of a polyurethane matrix reduces power degradation (associated with voltage surges above 220 V) by 2.59% for Ni/MgO-based MWCNT and by 10.42% for Co-Mo/MgO. This is due to the better heat resistance of polyurethane and the structural features of the polymer and the MWCNT. The current studies allow us to take the next step in the development of functional materials for electric heating and demonstrate the safety of using heaters at a higher voltage of up to 300 V, which does not lead to their ignition, but only causes changes in electrophysical parameters.
RESUMO
The turn to hydrogen as an energy source is a fundamentally important task facing the global energetics, aviation and automotive industries. This step would reduce the negative man-made impact on the environment on the one hand, and provide previously inaccessible power modes and increased resources for technical systems, predetermining the development of an absolutely new life cycle for important areas of technology, on the other. The most important aspect in this case is the development of next-generation technologies for hydrogen industry waste management that will definitely reduce the negative impact of technology on the environment. We consider the approaches and methods related to new technologies in the area of hydrogen storage (HS), which requires the use of specialized equipment equipped with efficient and controlled temperature control systems, as well as the involvement of innovative materials that allow HS in solid form. Technologies for controlling hydrogen production and storage systems are of great importance, and can be implemented using neural networks, making it possible to significantly improve all technological stages according to the criteria of energy efficiency reliability, safety, and eco-friendliness. The recent advantages in these directions are also reviewed.
RESUMO
Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas-especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.
RESUMO
The paper discusses the reasons for the resurrection of the term DNA microcircles through the change of its definition to "topologically closed DNA circles with the length less than 1 Kbp" from the entire population of circular DNA that holds the name of minicircles. The possible applications of such tool for in vivo studies of non-canonical DNA are also discussed. Prospective for in vivo and in vitro studies of non-canonical DNA cloned into microcircles are demonstrated. A method of stepwise elongation or shortening of plasmids is discussed.