Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 111(2): 244-252, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33151825

RESUMO

Pecan scab, caused by Venturia effusa, is the most economically damaging disease of pecan in the southeastern United States, and annual epidemics are most effectively managed through multiple fungicide applications. The fungicide applications can be the single greatest operating cost for commercial growers and the return on that investment is impacted by fungicide resistance. V. effusa produces multiple generations of conidia per season, exhibits substantial genetic diversity, overwinters as stromata in the tree, and is under immense selection from the applied fungicides, all of which lead to a high risk for developing fungicide resistance. Since the mid-1970s, resistance or reduced sensitivity has been observed in isolates of V. effusa to the methyl benzimidazole carbamates, demethylation inhibitors, quinone outside inhibitors, organotin compounds, and the guanidines. Over the last 10 years, several studies have been conducted that have improved both scab management and fungicide resistance management in V. effusa. The aim of this review is to summarize recent developments in our understanding of fungicide resistance in V. effusa in the context of scab management in southeastern pecan orchards. The history, modes of action, general use of the labeled fungicides, and mechanisms and stability of fungicide resistance in V. effusa are discussed; conclusions and future research priorities are also presented.


Assuntos
Ascomicetos , Carya , Fungicidas Industriais , Fungos do Gênero Venturia , Fungicidas Industriais/farmacologia , Doenças das Plantas , Sudeste dos Estados Unidos
2.
Plant Dis ; 105(2): 377-383, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32729799

RESUMO

An 18-ha commercial pecan orchard was sampled over 3 years to study the spatial and temporal variation in fungicide sensitivity of Venturia effusa, cause of pecan scab. The orchard was divided into a two-dimensional, 8 × 8 grid of 64 quadrats, each containing nine trees (unless there were missing trees), and samples were collected once per year from each quadrat to be tested for sensitivity to fentin hydroxide, propiconazole, and thiophanate-methyl. Averaged across the orchard, insensitivity to all three fungicides was significantly lower in 2016 compared with 2015, but significantly greater for fentin hydroxide and thiophanate-methyl in 2017. Although significant spatial autocorrelation was observed for sensitivity to propiconazole in 2017 and for thiophanate-methyl in 2015 and 2017, indicating clustering, all other fungicide-by-year combinations were not significant. Omnidirectional spatial dependence was observed for sensitivity to propiconazole and thiophanate-methyl in 2017. In both instances, the semivariance increased linearly with lag distance; however, the range of spatial dependence was >276.5 m and could not be estimated accurately. Additionally, a separate sampling was conducted in all 3 years to identify an appropriate sampling size and pattern for fungicide sensitivity screening. A leaflet sample size of 165 in 11 groups of 15 allowed for accurate sensitivity testing for the three fungicides in all 3 years; however, a sample size of 45 leaflets in three groups of 15 was sufficient for quantifying sensitivity for propiconazole and thiophanate-methyl, in most cases. These results indicate that considerable biological variation in fungicide sensitivity exists in orchard-scale populations of V. effusa and that the spatial characteristics of those populations may differ in two-dimensional space depending on the growing season.


Assuntos
Ascomicetos , Carya , Fungicidas Industriais , Fungos do Gênero Venturia , Fungicidas Industriais/farmacologia , Tiofanato
3.
Plant Dis ; 102(8): 1606-1611, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30673412

RESUMO

Venturia effusa, which causes pecan scab, has developed resistance to fungicides that were once effective. Over 2 years, laboratory-based sensitivity of fentin hydroxide (TPTH) and tebuconazole in V. effusa and their efficacy under field conditions were compared. Leaf and nut scab were assessed on pecan trees receiving 10 applications of TPTH, tebuconazole, azoxystrobin, azoxystrobin plus tebuconazole, TPTH plus tebuconazole, or no fungicide (NTC) per year. Sensitivity of V. effusa on leaflets collected from treated and nontreated trees was assessed in June and September, respectively. The mean relative germination (RGe) on TPTH at 30 µg/ml was 10.9 and 40.9% in 2016 and 4.2 and 0.6% in 2017. Mean relative growth (RGr) on tebuconazole at 1 µg/ml was 45.5 and 34.6% in 2016 and 69.3 and 56.3% in 2017. In both years, leaf and nut scab were significantly lower on trees treated with azoxystrobin, azoxystrobin + tebuconazole, or TPTH + tebuconazole when compared with NTC and tebuconazole-treated trees. Compared with the NTC, tebuconazole did not significantly reduce leaf scab in 2017 or nut scab in either year, indicating that an RGr value between 34.6 and 69.3% is likely to result in a control failure on tebuconazole-treated trees. Although better activity was expected, TPTH reduced scab with RGe values between 0.6 and 40.9%. These results are valuable for developing fungicide sensitivity thresholds to better predict fungicide performance.


Assuntos
Ascomicetos/efeitos dos fármacos , Carya/microbiologia , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Nozes/microbiologia , Compostos Orgânicos de Estanho/farmacologia , Folhas de Planta/microbiologia , Pirimidinas/farmacologia , Estrobilurinas/farmacologia , Árvores/microbiologia , Triazóis/farmacologia
4.
Plant Dis ; 100(11): 2294-2298, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30682915

RESUMO

Pecan scab, caused by Fusicladium effusum, is most effectively managed using multiple fungicide applications, including quinone outside inhibitors (QoIs). However, QoIs have a high risk for resistance developing in phytopathogenic fungi. QoI resistance is generally associated with amino-acid substitutions at positions 129, 137, and 143 of the cytochrome b (cytb) gene. A substitution at position 143 confers complete resistance, while an intron immediately downstream of this position prevents the substitution. The objective of this study was to assess the risk of QoI resistance by characterizing a partial fragment of the F. effusum cytb gene. Sequence analysis of the 1,919-bp fragment revealed the presence of a 1,407-bp intron immediately downstream of position 143. This intron was identified in 125 isolates collected from 16 counties across the state of Georgia. No substitutions were identified at positions 129 or 143 but, in seven of the isolates, glycine was replaced with serine at position 137. The ubiquitous nature of the detected intron provided strong evidence that the G143A substitution may not occur in F. effusum isolates, although resistance could still develop through intron loss events or the selection of intron-lacking genotypes, or as the result of other mutations in the cytb gene.

5.
Plant Dis ; 100(1): 188-191, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30688560

RESUMO

Daylily (Hemerocallis spp.) is a popular herbaceous perennial plant and was considered to be relatively disease free until 2000, when daylily rust, caused by Puccinia hemerocallidis, was first detected in the United States. Management of daylily rust in nurseries is dependent on the use of fungicides, which are typically applied to the foliage of large blocks of plants at 21- or 28-day intervals. The objectives of this study were to determine the most effective fungicides or fungicide combinations and application intervals for managing daylily rust in the field. Foliar sprays of azoxystrobin alone at 14-, 21-, or 28-day intervals, combinations of azoxystrobin + propiconazole, azoxystrobin + chlorothalonil, propiconazole + chlorothalonil, and chlorothalonil + thiophanate-methyl applied at intervals of 21or 28 days, and a nontreated control were evaluated under high disease pressure, at three locations in Griffin, GA in 2014. In all three fields, all treatments that included azoxystrobin were effective at reducing area under the disease progress curve (AUDPC) compared with the nontreated control. At two of the three locations, azoxystrobin applied at 14-day intervals had significantly lower AUDPC than when applied at 21- or 28-day intervals. The addition of propiconazole or chlorothalonil to azoxystrobin did not improve rust control. Disease ratings for propiconazole + chlorothalonil and thiophanate-methyl + chlorothalonil applied at 21- or 28-day intervals did not differ from the untreated control. The 21-day treatments resulted in significantly lower disease than 28-day treatments (all fungicides) in the middle and end of the season. Elimination of less efficacious active ingredients and unnecessary applications can help growers maximize profitability by reducing expenses as well as simplifying fungicide inventory and storage.

6.
Plant Dis ; 98(7): 916-923, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30708843

RESUMO

Fusicladium effusum causes pecan scab, which is the most destructive disease of pecan orchards in the United States. Conidia of the pathogen are spread by rain splash and wind. The fungus is pathogenically diverse; yet there is no information on its genetic diversity or population genetics. Universally primed polymerase chain reaction (UP-PCR) was used to investigate the genetic diversity and population structure on a hierarchical sample of 194 isolates collected from 11 orchard locations from Florida to Texas, consisting of three to four isolates from each of five to six trees at each location. Genetic variation was high throughout the region, with all but nine of the multilocus haplotypes being unique. Nei's average gene diversity ranged from 0.083 for a population from Mississippi to 0.160 for a population from Kansas. An analysis of molecular variance of the hierarchically sampled populations found that the majority of the genetic variability (82.6%) occurred at the scale of the individual tree and only relatively small amounts among populations in trees from an orchard (5.0%) or within groups (i.e., orchard location populations) (12.5%). The results suggest little population differentiation in F. effusum in the southeastern United States, although φpt values of genetic distance for pairwise comparisons indicated some populations could be differentiated from others. There was evidence of linkage disequilibrium in certain populations, and the common occurrence of asexual reproduction in F. effusum could lead to measurable linkage disequilibrium under certain circumstances. However, the degree of genetic diversity and the scale over which diversity is distributed is evidence that F. effusum undergoes regular recombination despite no known sexual stage.

7.
Plant Dis ; 96(7): 979-984, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30727218

RESUMO

Didymella bryoniae, which causes gummy stem blight (GSB) of watermelon, has a history of developing resistance to fungicides, most recently the succinate-dehydrogenase-inhibiting (SDHI) fungicide boscalid. To facilitate fungicide resistance monitoring, baseline sensitivity distributions were established for demethylation-inhibiting (DMI) fungicides tebuconazole and difenoconazole and the SDHI fungicide penthiopyrad, and reestablished for the SDHI fungicide boscalid. In all, 71 isolates with no known prior exposure to SDHIs or DMIs were used to determine the effective concentration at which mycelial growth was inhibited by 50% (EC50). EC50 values for boscalid, penthiopyrad, tebuconazole, and difenoconazole were 0.018 to 0.064, 0.015 to 0.057, 0.062 to 0.385, and 0.018 to 0.048 µg/ml, with median values of 0.032, 0.026, 0.118, and 0.031 µg/ml, respectively. Significant positive correlations between the sensitivity to penthiopyrad and boscalid (P < 0.0001, r = 0.75) and between tebuconazole and difenoconazole (P < 0.0001, r = 0.59) indicate a potential for cross-resistance between chemically related fungicides. In 2009, 103 isolates from fungicidetreated watermelon fields were tested for sensitivity to boscalid and penthiopyrad using a discriminatory concentration of 3.0 µg/ml. Of the isolates tested, 82 were insensitive and 14 were sensitive to both fungicides. Because of the significant potential for cross-resistance between closely related fungicides, growers will be advised not to use both SDHIs or both DMIs successively in the same fungicide spray program.

8.
Plant Dis ; 96(12): 1780-1784, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30727258

RESUMO

Gummy stem blight (GSB), caused by the fungus Didymella bryoniae, is the most destructive disease of watermelon and is managed primarily with fungicides. D. bryoniae has developed resistance to many fungicides that were once very effective, including azoxystrobin, boscalid, and thiophanate-methyl. Field experiments were conducted in Tifton (TN) and Reidsville (RV), GA in 2009 and 2010 to establish a relationship between frequency of resistance to a fungicide based on in vitro assays and its efficacy in the management of GSB. Frequency of resistance to boscalid, thiophanate-methyl, and azoxystrobin was >0.80 in isolates collected from nontreated plots in both locations and years. All isolates collected after six applications of boscalid, thiophanate-methyl, or azoxystrobin were resistant to the respective fungicide. All isolates collected from treated and nontreated plots were sensitive to tebuconazole and difenoconazole. GSB severity was assessed on a weekly basis from 63 days after planting. GSB severity in plots treated with boscalid, thiophanate-methyl, or azoxystrobin was not significantly different from that in the nontreated plots (39%, TN-2009; 45%, TN-2010; and 16%, RV-2010). GSB severity in tebuconazole-treated plots (27%, TN-2009; 14%, TN-2010; and 4%, RV-2010) was significantly lower than all other treatments and the nontreated control. There was a consistent negative association between frequency of fungicide resistance and disease control in the field. Thus, knowledge of the frequency of fungicide resistance in the pathogen population will be helpful in selecting the most effective fungicides for the management of GSB in watermelon fields.

9.
Plant Dis ; 95(3): 263-268, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30743495

RESUMO

Field experiments were conducted in 2002 to 2006 to characterize yield potential and disease resistance in the Bolivian landrace peanut (Arachis hypogaea) cv. Bayo Grande, and breeding lines developed from crosses of Bayo Grande and U.S. cv. Florida MDR-98. Diseases of interest included early leaf spot, caused by the fungus Cercospora arachidicola, and late leaf spot, caused by the fungus Cercosporidium personatum. Bayo Grande, MDR-98, and three breeding lines, along with U.S. cvs. C-99R and Georgia Green, were included in split-plot field experiments in six locations across the United States and Bolivia. Whole-plot treatments consisted of two tebuconazole applications and a nontreated control. Genotypes were the subplot treatments. Area under the disease progress curve (AUDPC) for percent defoliation due to leaf spot was lower for Bayo Grande and all breeding lines than for Georgia Green at all U.S. locations across years. AUDPC for disease incidence from one U.S. location indicated similar results. Severity of leaf spot epidemics and relative effects of the genotypes were less consistent in the Bolivian experiments. In Bolivia, there were no indications of greater levels of disease resistance in any of the breeding lines than in Bayo Grande. In the United States, yields of Bayo Grande and the breeding lines were greater than those of the other genotypes in 1 of 2 years. In Bolivia, low disease intensity resulted in the highest yields in Georgia Green, while high disease intensity resulted in comparable yields among the breeding lines, MDR-98, and C-99R. Leaf spot suppression by tebuconazole was greater in Bolivia than in the United States. This result indicates a possible higher level of fungicide resistance in the U.S. population of leaf spot pathogens. Overall, data from this study suggest that Bayo Grande and the breeding lines may be desirable germplasm for U.S. and Bolivian breeding programs or production.

10.
Plant Dis ; 92(11): 1524-1528, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30764449

RESUMO

Tomato spotted wilt virus (TSWV) has become the most serious problem in flue-cured tobacco in Georgia and is a growing problem in other tobacco-growing areas in the United States. The effects of transplant age (6 to 10 weeks), tobacco cultivar (K-326 and NC-71), and preplant applications of acibenzolar-S-methyl (ASM) and the insecticide imidacloprid (IMD) were evaluated on levels of TSWV infection, number of symptomatic plants, and yield in field trials over 4 years. In all 4 years and in four of five trials, treatment of transplants with ASM and IMD resulted in fewer symptomatic plants, smaller areas under the disease progress curve (AUDPC), and higher yields compared with the nontreated controls. There were no consistent effects of transplant age or cultivar on number of symptomatic plants or systemic infections, AUDPC, or yield. Treatment of transplants with ASM and IMD can significantly reduce the number of symptomatic plants in the field and substantially increase yields and value per hectare.

11.
Plant Dis ; 92(6): 896-902, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30769727

RESUMO

Field experiments were conducted in 2004 and 2005 to evaluate the response of several peanut cultivars to standard and reduced-input fungicide programs under production systems which differed in the duration of crop rotation, disease history within a field, or in the presence or absence of irrigation. Effects on early leaf spot (caused by Cercospora arachidicola), late leaf spot (caused by Cercosporidium personatum), and southern stem rot (caused by Sclerotium rolfsii), pod yields, and economic returns were assessed. Standard fungicide programs were similar for both sets of experiments and included applications of pyraclostrobin, tebuconazole, azoxystrobin, or chlorothalonil. Reduced-fungicide programs, comprising combinations of the aforementioned fungicides, resulted in two and four applications for the cultivar and irrigation experiment, respectively. Two additional programs (a seven-spray chlorothalonil and a nontreated control) were included in the cultivar experiment. Fungicide programs provided adequate levels of leaf spot suppression, and stem rot incidence was similar among fungicide programs within the two management systems. In the cultivar experiment, returns were significantly lower for the reduced program compared with the full program and seven-spray chlorothalonil program; however, they were significantly higher than the nontreated control. Significant differences in leaf spot, stem rot, and yield were observed among cultivars in both experiments. Overall, leaf spot intensity was lowest for the cvs. Georgia-03L and Georgia-01R and greatest for Georgia Green and Georgia-02C. Georgia-03L, Georgia-02C, and AP-3 consistently had lower incidence of stem rot than the other cultivars. Pod yields for all cultivars were equivalent to or greater than Georgia Green in both experiments; however, the performance of reduced-fungicide programs was inconsistent.

12.
Phytopathology ; 97(2): 187-94, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18944374

RESUMO

ABSTRACT Epidemics of early leaf spot of peanut (Arachis hypogaea), caused by Cercospora arachidicola, are less severe in strip-tilled than conventionally tilled fields. Experiments were carried out to characterize the effect of strip tillage on early leaf spot epidemics and identify the primary target of suppression using a comparative epidemiology approach. Leaf spot intensity was assessed weekly as percent incidence or with the Florida 1-to-10 severity scale in peanut plots that were conventionally or strip tilled. The logistic model, fit to disease progress data, was used to estimate initial disease (y(0)) and epidemic rate (r) parameters. Environmental variables, inoculum abundance, and field host resistance were assessed independently. For experiments combined, estimated y(0) was less in strip-tilled than conventionally tilled plots, and r was comparable. The epidemic was delayed in strip-tilled plots by an average of 5.7 and 11.7 days based on incidence and severity, respectively. Tillage did not consistently affect mean canopy temperature, relative humidity, or frequency of environmental records favorable for infection or spore dispersal. Host response to infection was not affected by tillage, but infections were detected earlier and at higher frequencies with noninoculated detached leaves from conventionally tilled plots. These data suggest that strip tillage delays early leaf spot epidemics due to fewer initial infections; most likely a consequence of less inoculum being dispersed to peanut leaves from overwintering stroma in the soil.

13.
Plant Dis ; 91(7): 822-827, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30780391

RESUMO

Epidemics of early leaf spot, caused by Cercospora arachidicola, of peanut (Arachis hypogaea) are delayed in strip-tilled compared to conventionally tilled fields. This effect may be due to applications of glyphosate used to kill the winter cover crop in strip-tilled fields and/or the presence of cover crop residue at the soil surface of strip-tilled fields. Preplant herbicide (no herbicide, glyphosate, and paraquat), reciprocal residue (plus residue in conventionally tilled plots and minus residue in strip-tilled plots), and added straw mulch were evaluated to determine their effects on early leaf spot epidemics (AUDPC based on incidence and severity, and final percent defoliation) in conventionally tilled and strip-tilled plots. Additional experiments were conducted to characterize the effects of mulch (straw, fumigated straw, and plastic straw [Textraw]) treatments on disease, and to study tillage effects on disease in nonrotated peanut fields. Glyphosate and paraquat had no effect on AUDPC values or defoliation. The addition of straw to conventionally tilled plots significantly reduced disease levels. Cover crop and straw treatments had no significant effect on disease in the strip-tilled plots. AUDPC values were highest in the bare soil plots, lowest in the straw and fumigated straw plots, and intermediate in the plots with Textraw. Fewer initial infections were detected in the Textraw plots compared to the bare soil plots based on results of a trap leaf experiment. Strip-tillage did not consistently suppress early leaf spot epidemics in nonrotated fields. These results show that the presence of cover crop residue is partly responsible for the early leaf spot suppression observed in strip-tilled fields. Cover crop residue may interfere with the dispersal of primary inoculum from overwintering stroma in the soil to the plant tissues.

14.
Plant Dis ; 91(3): 273-278, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30780560

RESUMO

Two field studies were conducted in 2000, 2001, and 2002 to determine the effects of row pattern (91.4-cm single or 20.3-cm twin) and seeding rate (single: 12.5, 17.4, or 22.6 seed m-1or twin: 6.2, 8.9, or 11.5 seed m-1) on peanut stem rot (Sclerotium rolfsii) development. The first study was conducted in a naturally infested field and relative efficacy of azoxystrobin (Abound 2.08 F, applied at a rate of 0.3 kg a.i. ha-1 at 60 and 90 days after planting [DAP]) also was evaluated. In this study, stem rot incidence was significantly greater (P < 0.05) in single rows planted at high seeding rates than in twin rows planted at any of the seeding rates. Row pattern did not affect azoxystrobin efficacy, and disease incidence was nearly half as much in twin rows treated with fungicide than incidence in single rows treated with fungicide. In the second field study, individual peanut plants in fumigated plots were inoculated once with S. rolfsii at 50, 70, or 90 DAP. Stem rot incidence at harvest was significantly greater on plants inoculated 50 DAP than plants inoculated 70 or 90 DAP. The incidence of spread to adjacent rows was higher in plots where plants were inoculated at 50 than at 90 DAP. Plants inoculated 90 DAP had less disease at harvest, but often developed more severe symptoms within the first week after inoculation compared with plants inoculated 50 or 70 DAP. Symptoms were more severe in single than in twin rows, and at the higher seeding rates. Data from these studies suggest that the physical spacing between plants is a critical factor in stem rot development both on individual plants and in plant populations.

15.
Plant Dis ; 90(4): 493-500, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30786600

RESUMO

Field experiments were carried out to evaluate the effects of integrated management of early leaf spot, caused by Cercospora arachidicola, and spotted wilt, caused by Tomato spotted wilt virus (TSWV), on peanut (Arachis hypogaea) using host resistance, two tillage systems, and varying fungicide programs. Effects on pod yield and economic return were assessed. Genotypes C-11-2-39 and Tifrunner demonstrated the best field resistance to TSWV, whereas cvs. DP-1 and GA-01R and line C-28-305 were among the genotypes with the best leaf spot resistance. Epidemics of both diseases were comparable or suppressed in strip-tilled plots compared with conventionally tilled plots. Leaf spot intensity decreased with increased fungicide applications, but to a lesser degree with use of resistance and strip tillage. Yields and net returns were similar between tillage treatments in 2002 and lower in strip tillage in 2003. Genotypes with the greatest yields and returns were C-11-2-39, C-99R, and GA-01R. Returns were comparable among the four-, five-, and seven-spray programs in both years, despite differences in yield. The standard production system, Georgia Green in conventional tillage with seven sprays, resulted in lower returns than half the integrated systems tested in 2002, but had comparable or higher returns than nearly all systems in 2003. When significant, yields and returns were correlated with spotted wilt intensity to a greater degree than leaf spot intensity.

16.
Phytopathology ; 95(5): 463-71, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-18943310

RESUMO

ABSTRACT Amplified fragment length polymorphisms (AFLPs) were used to estimate phylogenetic relationships within Magnaporthe grisea and determine the genetic structure of M. grisea populations associated with tall fescue and St. Augustinegrass in Georgia. Sixteen clonal lineages were identified in a sample population of 948 isolates. Five lineages were isolated from tall fescue (E, G1, G2, G4, and H), with lineage G4 comprising 90% of the population. Isolates from tall fescue were closely related to those from perennial ryegrass, weeping lovegrass, and wheat. Two M. grisea lineages were isolated from St. Augustinegrass (C and K), with lineage C comprising 99.8% of the population. Populations from crabgrass were dominated (98%) by lineage K, but also contained a single lineage C isolate. Haplotype diversity indices ranged from 0.00 to 0.29 in tall fescue populations and from 0.00 to 0.04 in St. Augustinegrass populations. Selection due to host species was the primary factor determining population structure according to analysis of molecular variance; host cultivar and geographical region had no significant effect. The host range of M. grisea lineages from turfgrasses was determined in growth chamber experiments and supports the prominent role of host species in determining the genetic structure of M. grisea populations from turfgrasses in Georgia.

17.
Plant Dis ; 89(9): 969-974, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30786630

RESUMO

Two microplot studies were conducted with peanut (Arachis hypogaea L.) in 2000, 2001, and 2002 to determine the effects of plant spacing, inoculation date, and cultivar on stem rot development caused by Sclerotium rolfsii Sacc., tomato spotted wilt incidence, and microclimate (temperature and relative humidity). Stem rot severity and incidence decreased as plant spacings were increased in 5-cm increments from 5 to 30 cm. Two cultivars with similar susceptibility but different growth habits were compared. Perhaps due to heavy irrigation and extensive vegetative growth, stem rot was similar for 'Florida MDR-98' and 'Georgia Browne'. Plants inoculated later in the year (90 days after planting [DAP]) had less disease at harvest, but often developed more severe symptoms within the first week of inoculation than plants inoculated at 50 or 70 DAP. Canopy microclimate was different than ambient conditions for all treatments; however, differences among treatments were inconsistent and did not explain differences in disease among spacings. Generally, as plant spacing decreased and plant population increased, stem rot increased and tomato spotted wilt was reduced. These data demonstrate that the physical spacing between plants is a critical factor in disease development.

18.
Plant Dis ; 88(9): 951-958, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30812247

RESUMO

Experiments were conducted in the field and laboratory to determine effects of low temperatures on Xylella fastidiosa populations in American sycamore. Roots and shoots from naturally infected trees at two locations were collected monthly. Sap extracted from the samples was tested by enzyme-linked immunosorbent assay for presence of X. fastidosa and was diluted and plated on periwinkle wilt medium to determine populations of viable bacteria. Cumulative rainfall and hours below temperature thresholds (-5 to 10°C) were recorded at each site. Bacterial populations in shoots were negatively correlated with cumulative hours below -5°C air temperature (r= -0.96). In roots, bacterial populations were only weakly correlated with cumulative hours below soil temperature thresholds (-0.61 < r <-0.25). Bacterial populations were not correlated with monthly rainfall. In the laboratory, resistant and susceptible sycamore trees were inoculated with X. fastidiosa and held in the dark at 5°C or 22°C. After 12 weeks, inoculated stem sections were collected and sap was extracted and tested as described previously. Stems that tested positive for X. fastidiosa were divided into additional samples and tested as described above. Results of the laboratory study indicated no significant effects of low-temperature treatment (5°C) or host resistance on viable bacteria. Bacterial detection frequency and population size were greatest near the inoculation point and the primary direction of early bacterial spread was acropetal.

19.
Plant Dis ; 88(8): 858-864, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30812514

RESUMO

Field experiments were conducted in 2000 and 2001 on Georgia Green, Florida MDR-98, and C-99R peanut (Arachis hypogaea) cultivars in Tifton, GA, to determine the effects of tillage practices on early leaf spot (Cercospora arachidicola) epidemics under standard fungicide regimes and fungicide regimes with fewer applications. Leaf spot epidemics were suppressed in reduced tillage (strip-till) plots compared with conventional tillage plots and were suppressed in MDR-98 and C-99R cultivars compared with the standard runner-type cultivar, Georgia Green. Within tillage and cultivar combinations, leaf spot intensity typically was lower in plots treated with fungicides at standard intervals (seven total applications) than in those treated at extended intervals (four total applications). However, in most cases, leaf spot control in extended interval treatments in the strip-till system was comparable to that in the standard interval treatments in conventional tillage. Based on these results, the number of fungicide applications could be reduced without compromising control of leaf spot when reduced tillage is used, especially if combined with moderately resistant cultivars. Suppression of leaf spot epidemics in the strip-till plots did not coincide with higher yields in either year. In 2001, yields were lower in strip-till plots than in conventional tillage plots. Yields were typically higher in the cultivar C-99R than in Georgia Green, regardless of the tillage treatment.

20.
Plant Dis ; 87(8): 906-912, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30812793

RESUMO

The components of resistance in tall fescue to Magnaporthe grisea, the causal agent of gray leaf spot, were measured in growth chamber experiments. Cultivars ranging in susceptibility to M. grisea were selected: 'Kentucky 31' (susceptible), 'Rebel III' (moderately susceptible), 'Coronado' (resistant), and 'Coyote' (resistant). Plants were inoculated with nine M. grisea isolates representing five clonal lineages associated with tall fescue in Georgia. Compared to Kentucky 31, Coronado and Coyote exhibited longer incubation and latent periods, reduced rates of disease progress and lesion expansion, and lower final disease incidence, final foliar blight incidence, final mean lesion length, area under the lesion expansion curve, and area under the disease progress curve. No evidence of hypersensitive response was observed, all M. grisea isolates completed the disease cycle by producing secondary inoculum, and no differential response to isolates from different clonal lineages was detected in Coronado and Coyote. These results indicate that Coronado and Coyote have partial resistance to M. grisea. Measurement of resistance components using primary parameters and derived parameters yielded similar results. Foliar blight incidence data exhibited increased variation relative to other parameters and was less powerful for detection of M. grisea resistance. Measurements of incubation period, latent period, final disease incidence, and final mean lesion length were the most effective and efficient methods for detecting M. grisea resistance in tall fescue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...