Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 77(Pt 1): 1-10, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404520

RESUMO

Crystallographic phasing strategies increasingly require the exploration and ranking of many hypotheses about the number, types and positions of atoms, molecules and/or molecular fragments in the unit cell, each with only a small chance of being correct. Accelerating this move has been improvements in phasing methods, which are now able to extract phase information from the placement of very small fragments of structure, from weak experimental phasing signal or from combinations of molecular replacement and experimental phasing information. Describing phasing in terms of a directed acyclic graph allows graph-management software to track and manage the path to structure solution. The crystallographic software supporting the graph data structure must be strictly modular so that nodes in the graph are efficiently generated by the encapsulated functionality. To this end, the development of new software, Phasertng, which uses directed acyclic graphs natively for input/output, has been initiated. In Phasertng, the codebase of Phaser has been rebuilt, with an emphasis on modularity, on scripting, on speed and on continuing algorithm development. As a first application of phasertng, its advantages are demonstrated in the context of phasertng.xtricorder, a tool to analyse and triage merged data in preparation for molecular replacement or experimental phasing. The description of the phasing strategy with directed acyclic graphs is a generalization that extends beyond the functionality of Phasertng, as it can incorporate results from bioinformatics and other crystallographic tools, and will facilitate multifaceted search strategies, dynamic ranking of alternative search pathways and the exploitation of machine learning to further improve phasing strategies.


Assuntos
Cristalografia por Raios X , Software , Algoritmos , Aprendizado de Máquina , Proteínas/química
2.
Acta Crystallogr D Struct Biol ; 75(Pt 10): 861-877, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588918

RESUMO

Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method. Phenix is a comprehensive software package for macromolecular structure determination that handles data from any of these techniques. Tasks performed with Phenix include data-quality assessment, map improvement, model building, the validation/rebuilding/refinement cycle and deposition. Each tool caters to the type of experimental data. The design of Phenix emphasizes the automation of procedures, where possible, to minimize repetitive and time-consuming manual tasks, while default parameters are chosen to encourage best practice. A graphical user interface provides access to many command-line features of Phenix and streamlines the transition between programs, project tracking and re-running of previous tasks.


Assuntos
Automação/métodos , Substâncias Macromoleculares/química , Design de Software , Validação de Programas de Computador , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...